中考数学复习专题精品导学案第15讲二次函数的应用.doc

中考数学复习专题精品导学案第15讲二次函数的应用.doc

ID:49647994

大小:472.68 KB

页数:23页

时间:2020-03-02

中考数学复习专题精品导学案第15讲二次函数的应用.doc_第1页
中考数学复习专题精品导学案第15讲二次函数的应用.doc_第2页
中考数学复习专题精品导学案第15讲二次函数的应用.doc_第3页
中考数学复习专题精品导学案第15讲二次函数的应用.doc_第4页
中考数学复习专题精品导学案第15讲二次函数的应用.doc_第5页
资源描述:

《中考数学复习专题精品导学案第15讲二次函数的应用.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2013年中考数学专题复习第十五讲二次函数的应用【基础知识回顾】一、二次函数与一元二次方程:二、二次函数解析式的确定:1、设顶点式,即:设2、设一般式,即:设【提醒:求二次函数解析式,根据具体同象特征灵活设不同的关系或除上述常用方法以外,还有:如抛物线顶点在原点可设以y轴为对称轴,可设顶点在x轴上,可设抛物线过原点等】三、二次函数的应用1、实际问题中解决最值问题:2、与一次函数或直线形图形结合的综合性问题【提醒:1、在有关二次函数最值的应用问题中一定要注意自变量的取值范围2、有关二次函数综合性问题中一般作为中考压轴题出现,解决此类问题时要将题目分解开来,讨论过程中要尽

2、量将问题】【重点考点例析】考点一:二次函数的最值例1(2012•呼和浩特)已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x(  )A.有最大值,最大值为B.有最大值,最大值为C.有最小值,最小值为D.有最小值,最小值为分析:先用待定系数法求出二次函数的解析式,再根据二次函数图象上点的坐标特征求出其最值即可.点评:本题考查的是二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题是利用公式法求得的最值.对应训练1.(2012•

3、兰州)已知二次函数y=a(x+1)2-b(a≠0)有最小值1,则a,b的大小关系为(  )A.a>bB.a<bC.a=bD.不能确定考点二:确定二次函数关系式ABCOxy例2(2012•珠海)如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.分析:(1)将点A(1,0)代入y=(x-2)2+m求出m的值,根据点的对称性,将y=3代入二次函数解析式

4、求出B的横坐标,再根据待定系数法求出一次函数解析式;(2)根据图象和A、B的交点坐标可直接求出kx+b≥(x-2)2+m的x的取值范围.点评:本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数与不等式组,求出B点坐标是解题的关键.对应训练2.(2012•佳木斯)如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.分析:(1)直接把(0,0),(2,0)代入y=x2+bx+c中,列方程组求b、c的值即可;(2)将二次

5、函数解析式写成顶点式,可求顶点坐标及对称轴;(3)设点B的坐标为(a,b),根据三角形的面积公式求b的值,再将纵坐标b代入抛物线解析式求a的值,确定B点坐标.点评:本题考查了待定系数法求二次函数解析式,二次函数的性质.关键是将抛物线上两点坐标代入解析式,列方程组求解析式,将抛物线解析式写成顶点式,可求顶点坐标及对称轴.考点三:二次函数与x轴的交点问题例3(2012•天津)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和

6、(3,0).其中,正确结论的个数是(  )A.0B.1C.2D.3分析:将已知的一元二次方程整理为一般形式,根据方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集即可对选项②进行判断;再利用根与系数的关系求出两根之积为6-m,这只有在m=0时才能成立,故选项①错误;将选项③中的二次函数解析式整理后,利用根与系数关系得出的两根之和与两根之积代入,整理得到确定出二次函数解析式,令y=0,得到关于x的方程,求出方程的解得到x的值,确定出二次函数图象与x轴的交点坐标,即可对选项③进行判断.点评:此题考查了抛物线与x轴的交点,一元二次方程的解,

7、根与系数的关系,以及根的判别式的运用,是中考中常考的综合题.对应训练3.(2012•株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是(  )A.(-3,0)B.(-2,0)C.x=-3D.x=-2考点四:二次函数的实际应用例4(2012•绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=-(x-4)2+3,由此可知铅球推出的距离是m.分析:根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.点评:本题考查了二次函数的应用中函数式

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。