欢迎来到天天文库
浏览记录
ID:49534321
大小:114.00 KB
页数:4页
时间:2020-03-02
《二次函数基础分类练习.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、练习四函数的图象与性质1、抛物线,顶点坐标是,当x时,y随x的增大而减小,函数有最值.2、试写出抛物线经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数和具有的共同性质(至少2个).4、二次函数的图象如图:已知,OA=OC,试求该抛物线的解析式.5、抛物线与x轴交点为A,与y轴交点为B,求A、B两点坐标及⊿AOB的面积.6、二次函数,当自变量x由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y随x值的变化情
2、况.7、已知抛物线的顶点在坐标轴上,求k的值.练习五的图象与性质1、请写出一个二次函数以(2,3)为顶点,且开口向上.____________.2、二次函数y=(x-1)2+2,当x=____时,y有最小值.3、函数y=(x-1)2+3,当x____时,函数值y随x的增大而增大.4、函数y=(x+3)2-2的图象可由函数y=x2的图象向平移3个单位,再向平移2个单位得到.5、已知抛物线的顶点坐标为,且抛物线过点,则抛物线的关系式是6、如图所示,抛物线顶点坐标是P(1,3),则函数y随自变量x的增大而减小的x的取值范围是()A、
3、x>3B、x<3C、x>1D、x<17、已知函数.(1)确定下列抛物线的开口方向、对称轴和顶点坐标;(2)当x=时,抛物线有最值,是.(3)当x时,y随x的增大而增大;当x时,y随x的增大而减小.(4)求出该抛物线与x轴的交点坐标及两交点间距离;(5)求出该抛物线与y轴的交点坐标;(6)该函数图象可由的图象经过怎样的平移得到的?8、已知函数.(1)指出函数图象的开口方向、对称轴和顶点坐标;(2)若图象与x轴的交点为A、B和与y轴的交点C,求△ABC的面积;(3)指出该函数的最值和增减性;(4)若将该抛物线先向右平移2个单位,在
4、向上平移4个单位,求得到的抛物线的解析式;(5)该抛物线经过怎样的平移能经过原点.(6)画出该函数图象,并根据图象回答:当x取何值时,函数值大于0;当x取何值时,函数值小于0.练习六的图象和性质1、抛物线的对称轴是.2、抛物线的开口方向是,顶点坐标是.3、试写出一个开口方向向上,对称轴为直线x=-2,且与y轴的交点坐标为(0,3)的抛物线的解析式.4、将y=x2-2x+3化成y=a(x-h)2+k的形式,则y=____.5、把二次函数的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线与x轴交
5、点的坐标为_________;7、函数有最____值,最值为_______;8、二次函数的图象沿轴向左平移2个单位,再沿轴向上平移3个单位,得到的图象的函数解析式为,则b与c分别等于()A、6,4B、-8,14C、-6,6D、-8,-149、二次函数的图象在轴上截得的线段长为()A、B、C、D、10、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1);(2);(3)11、把抛物线沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数的图象与x轴
6、和y轴的交点坐标13、已知一次函数的图象过抛物线的顶点和坐标原点(1)求一次函数的关系式;(2)判断点是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?
此文档下载收益归作者所有