"> " />
欢迎来到天天文库
浏览记录
ID:49490923
大小:203.50 KB
页数:5页
时间:2020-03-02
《二试真题分析(1)(上).doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、第十讲•■■r将来写"己的名人名言二试的第一道题是平面几何题.常见的于段是四点共圆、三角形的性质、等式变形、著名定理等相结合.i般是以线段的数量关系,位置关系,边角关系、相似等为主体.例题精讲【例1】(1996年全国高中联赛题)如图,G>Q与OQ和△43C的三边所在的3条直线都相切,E、F、G、H为切点,直线EG与FH交于点P•求证:P4丄BC.P是平面上的动点,令【例2】(2001全国高中数学联赛)如图,在△ABC中,O为外心,三条高AD.BE、CF交于点H,直线EZ)和交于点M,FQ和4C交于点N.求证:(i)
2、OB丄DF,OC丄DE;⑵OH1MN.【例3】(2008全国高中数学联赛)如图,给定凸四边形ABCD,ZB+ZD<180°f(P)=PABC+PDCA十PC・AB.(1)求证:当/(P)达到最小值时,P,A,B,C四点共圆;ZECB=-ZECA,2⑵设E是ZUBC外接圆。的屆上一点,满足:虫=<1=V3-1AB2EC又DA,DC是OO的切线,AC=^2,求/(P)的最小值.DEDA【例4】(1999全国高中数学联赛)如图,在四边形ABCD中対角线4C平分ZBAD在CD上取一点£,BE与AC相交于尸,延长DF交BC于G
3、.求证:ZGAC=ZEAC.【例5】(2002全国高中数学联赛)如图,在△4BC中,ZA=60°,AB>AC,点O是外心,两条高BE、CF交于H点.点M、N分别在线段BH、上,且满足BM=CN.求血+NH的值.OH【例6】(2000全国高中数学联赛)如图,在锐角三角形ABC的BC边上有两点E、F,满足=,作FM丄肋,FN1AC(M、N是垂足),延长AE交三角形ABC的外接圆于Z).证明:四边形AMDN与三角形4BC的面积相等.大显身手'a1.(2006全国高中数学联赛)以傀和热为焦点的椭圆与的边力坊交于G(i=0,l
4、)•在4血的延长线上任取点花,以心为圆心,心化为半径作佗0o交G垃的延长线于Q以G为圆心,GQ为半径作么片交耳A的延长线于人;以§为圆心,B出为半径作片Q交目G)的延长线于Q;以<:0为圆心,为半径作QR,交4垃的延长线于用.试证:⑴点丘与点花重合,且心0°与人。相内切于%;⑵四点,片共圆•
此文档下载收益归作者所有