构建知识体系 (3).ppt

构建知识体系 (3).ppt

ID:49317891

大小:243.50 KB

页数:13页

时间:2020-02-04

构建知识体系 (3).ppt_第1页
构建知识体系 (3).ppt_第2页
构建知识体系 (3).ppt_第3页
构建知识体系 (3).ppt_第4页
构建知识体系 (3).ppt_第5页
资源描述:

《构建知识体系 (3).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、小结与复习第十六章二次根式要点梳理1.二次根式的概念一般地,形如____(a≥0)的式子叫做二次根式.对于二次根式的理解:①带有二次根号;②被开方数是非负数,即a≥0.注意:二次根式中,被开方数一定是非负数,否则就没有意义.2.二次根式的性质3.最简二次根式满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含_______;(2)被开方数中不含能___________的因数或因式.开得尽方分母4.二次根式的乘除乘法:=______(a≥0,b≥0);除法:=____(a≥0,b>0).

2、可以先将二次根式化成_____________,再将________________的二次根式进行合并.被开方数相同最简二次根式5.二次根式的加减:类似合并同类项注意平方差公式与完全平方公式的运用!6.二次根式的混合运算与有理数的混合运算类似:先算乘(开)方,再算乘除,最后算加减,有括号先算括号里面的.考点讲练考点一二次根式有意义的条件及性质例1使代数式有意义的x的取值范围是.x≥且x≠3【解析】分别求出使分式、二次根式有意义的x的取值范围,再求出它们解集的公共部分.根据题意,有3-x≠0,2x-

3、1≥0,解得x≥且x≠3.若式子在实数范围内有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x<3A针对训练例2若求的值.解:∵∴x-1=0,3x+y-1=0,解得x=1,y=-2,则【解析】根据题意及二次根式与完全平方式的非负性可知和均为0.3.若实数a,b满足则.1初中阶段主要涉及三种非负数:≥0,

4、a

5、≥0,a2≥0.如果若干个非负数的和为0,那么这若干个非负数都必为0.这是求一个方程中含有多个未知数的有效方法之一.方法总结针对训练考点二二次根式的化简及运算例3实数a,b在数轴

6、上的位置如图所示,请化简:ba0解:由数轴可以确定a<0,b>0所以所以原式=-a-(-a)+b=b.【解析】化简此代数式的关键是能准确地判断a,b的符号,然后利用绝对值及二次根式的性质化简.4.若1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。