欢迎来到天天文库
浏览记录
ID:48927119
大小:181.50 KB
页数:9页
时间:2020-02-25
《高中数学 3.1.1 方程的根与函数的零点教案 新人教A版必修1.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、经典小初高讲义“方程的根与函数的零点”【教学目标】一、知识与技能1、通过探索一元二次方程的实根与二次函数图象之间的关系,让学生领会方程的根与函数零点之间的联系,了解零点的概念.2、以具体函数在某区间上存在零点的特点,探索在某区间上图象连续的函数存在零点条件以及个数,理解并掌握在某个区间上图象连续的函数零点存在的判定方法.二、过程与方法1、采用“设问——探索——归纳——定论”层层递进的方式来突破本课的重难点。由二次函数的图象与x轴的交点的横坐标和对应的一元二次方程为突破口,探究方程的根与函数的零点的关系,以探究的方法发现函数零点存在的条件。2、在课堂探究
2、中渗透由特殊到一般的认识规律,渗透数形结合思想及转化思想以及函数与方程的思想,培养学生观察、分析、归纳、抽象和概括能力.三、情感、态度、价值观努力营造平等、民主的课堂气氛,以学生为主体,营造学习氛围,使学生产生热爱学习数学的积极心理,引导学生进行积极主动的学习,培养良好的数学学习情感.在函数与方程的联系中体验数形结合思想,培养学生的辨证思维能力,以及分析问题解决问题的能力.从易到难,使学生体会到学习数学的成功感,体验规律发现的快乐.【教学重点】1、体会函数的零点与方程根之间的联系;2、掌握函数零点存在的判定方法.【教学难点】函数零点存在的判定方法及其运
3、用.【教学方式与手段】电脑,多媒体,黑板.【教学过程设计】(一)设问激疑,引出新知方程解法史话小初高优秀教案经典小初高讲义:在人类用智慧架设的无数座从未知通向已知的金桥中,方程的求解是其中璀璨的一座,虽然今天我们可以从教科书中了解各式各样方程的解法,但这一切却经历了相当漫长的岁月.对于方程的求解问题,古今中外的数学家已经作了大量的工作,取得辉煌的成果,比如花拉子米公元825年左右编辑著成了《代数学》,比较完整地讨论了一次、二次方程的一般原理;我国南宋数学家秦九绍在《数书九章》中提出了“正负开方术”,此法可以求出任意次代数方程的正根;1824年,挪威数学
4、家阿贝尔成功地证明了五次以上一般方程没有根式解。随着计算机技术的发展,方程的数值解法得到了广泛的运用,如二分法,牛顿法、弦截法等,今天我们将沿着前人走过的足迹一起探索对于一般方程的求解方法.【设计意图:了解数学史,激发学生学习兴趣。】问题1求下列方程的根.(1);(2);(3).问题2观察下表(一),求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,并写出函数图象与x轴交点的坐标。方程函数函数图象(简图)方程的实数根函数的图象与轴的交点提出疑问:方程的根与函数图象与轴交点的横坐标之间有什么关系?结论:方程的根就是函数图象与轴交点的横坐标。问题
5、3若将上面特殊的一元二次方程推广到一般的一元二次方程及相应的二次函数的图象与x轴交点的关系,上述结论是否仍然成立?小初高优秀教案经典小初高讲义方程的根函数的图象(简图)图象与x轴的交点【设计意图:让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系.为引出函数零点的概念做准备。】(二)总结归纳,形成概念1、函数的零点:对于函数y=f(x),我们把使方程f(x)=0的实数x叫做函数y=f(x)的零点。辨析练习:函数的零点是:()A.(-1,0),(3,0); B.x=-1; C.x=3;D.-1和3.问:零点是一个点吗?说明:①函数零点不是一个点,
6、而是具体的自变量的取值.②求函数零点就是求方程f(x)=0的根.【设计意图:及时矫正“零点是交点”这一误解.】2、你能说说方程的根、函数图象与x轴的交点、函数的零点三者之间的关系吗?等价关系:方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点【设计意图:引导学生给出函数零点的定义,并引导学生仔细体会这段文字,感悟其中的思想方法;通过引导,学生自己归纳出三者之间的关系,并且明确提出转化思想。】3、归纳函数的零点与方程根的关系小初高优秀教案经典小初高讲义函数的零点与方程的根有什么联系和区别?联系:(1)数值上相等:求函数零点就
7、是求方程的根.(2)存在性相同:函数y=f(x)有零点ó方程f(x)=0有实数根ó函数y=f(x)的图象与x轴有交点区别:零点对于函数而言,根对于方程而言.【设计意图:进一步理解零点的概念,灵活运用三者之间的关系。以上关系说明:函数与方程有着密切的联系,函数问题有时可转化为方程问题,同样,有些方程问题可以转化为函数问题来求解,这正是函数与方程思想的基础.】(三)初步运用,示例练习例1:求函数的零点。求函数零点的步骤:(1)令f(x)=0;(2)解方程f(x)=0;(3)写出零点变式练习:求下列函数的零点。(1);(2)【设计意图:让学生再次认识零点的概
8、念,熟悉零点的求法(即求相应方程的实数根).】(四)实例探究,发现定理重温《小马过河的故事》问
此文档下载收益归作者所有