欢迎来到天天文库
浏览记录
ID:48731079
大小:293.00 KB
页数:14页
时间:2020-01-20
《数学人教版八年级上册12.2三角形全等判定(一).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、11.2三角形全等的判定条件(一)知识回顾①AB=DE②BC=EF③CA=FD④∠A=∠D⑤∠B=∠E⑥∠C=∠FABCDEF1、什么叫全等三角形?能够重合的两个三角形叫全等三角形。2、全等三角形有什么性质?△ABC≌△DEF11.2三角形全等的判定(一)学习目标1.掌握三角形全等的“边边边”判定条件,能初步应用“边边边”条件判定两个三角形全等。2.会用尺规完成已知三边作三角形的作图。3..经历探索三角形全等条件的过程,体会利用操作,归纳获得数学结论的过程。自学指导一阅读P6—P7例1前的内容,思考解决以下问题:1、对应边相等,对应角相等的六个条件中只
2、具备一个或两个,两个三角形能全等吗?2、已知三边作三角形书中运用了那些作图工具?3、动手完成作图,掌握已知三边作三角形的方法。把所画的三角形剪下来,并与已知三角形比一比,发现什么现象?4、探究2的结果反映了什么规律?(约6分钟)比一比,看谁参与活动积极、主动,自学效果好!提示:把你认为重要的内容画在书上!ABCDEF〃〃\≡≡在△ABC和△DEF中,∴△ABC≌△DEF(SSS)一定要记住这种全等证明的书写格式哟!用数学语言表述:三边对应相等的两个三角形全等,(可以简写为“边边边”或“sss”)判定定理一:自学指导二自学P7的例1注意:(1)、体会证
3、明题的分析思路(2)、“因为”、“所以”的简写符号;(3)、仔细阅读例题1的书写过程,归纳证明过程的一般书写格式。(约5分钟)应用迁移,巩固提高例1.如下图,△ABC是一个刚架,AB=AC,AD是连接A与BC中点D的支架。求证:△ABD≌△ACD分析:要证明△ABD≌△ACD,首先看这两个三角形的三条边是否对应相等。由已知可知AB=AC由图可知AD是公共边,即AD=AD所以要证△ABD≌△ACD,只需证明BD=CD,而由已知D是BC的中点即可得出。∵D是BC的中点(已知)∴BD=CD(线段中点定义)在△ABD和△ACD中AB=AC(已知)BD=CD(已
4、证)AD=AD(公共边)∴△ABD≌△ACD(SSS)证明:1、如图,C是BF的中点,AB=DC,AC=DF.求证:△ABC≌△DCF证明:∵C是BF的中点(已知)∴BC=CF(线段中点定义)在△ABC和△DCF中AB=DC(已知)AC=DF(已知)BC=CF(已证)∴△ABC≌△DCF(SSS)小试牛刀变式已知:如图,点B、E、C、F。在同一直线上,AB=DE,AC=DF,BE=CF.求证:(1)△ABC≌△DEF(2)证明(1)∵BE=CF(已知)∴BE+EC=CF+EC(等式性质)即BC=EF在△ABC和△DEF中AB=DE(已知)AC=DF(已
5、知)BC=EF(已证)(2)∵△ABC≌△DEF∴△ABC≌△DEF(SSS)∴你还有其他结论吗?1.如图所示,工人师傅砌门时,如何用木条固定长方形门框ABCD,使其不变形?这种做法的根据是.走进生活ABDC三角形的稳定性2、工人师傅常用角尺平分一个任意角。做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合。过角尺顶点C的射线OC便是∠AOB的角平分线。为什么?ONMBAC已知:如图,OM=ON、MC=NC求证:OC是∠AOB的角平分线。课堂小结想一想:通过本节课的学习你有那些收获?1
6、、三边对应相等的两个三角形全等(边边边或SSS);2、知道三角形三条边的长度怎样画三角形。3、理解三角形的稳定性。4、体会数学的分类、转化思想的应用。再见!祝全体同学:学习进步健康快乐
此文档下载收益归作者所有