欢迎来到天天文库
浏览记录
ID:48730738
大小:4.87 MB
页数:22页
时间:2020-01-20
《数学人教版九年级上册弧长、扇形面积公式.4 第1课时弧长和扇形面积.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.4弧长和扇形面积第二十四章圆导入新课讲授新课当堂练习课堂小结第1课时弧长和扇形面积1.理解弧长和扇形面积公式的探求过程.(难点)2.会利用弧长和扇形面积的计算公式进行计算.(重点)学习目标问题1如图,在运动会的4×100米比赛中,甲和乙分别在第1跑道和第2跑道,为什么他们的起跑线不在同一处?问题2怎样来计算弯道的“展直长度”?因为这些弯道的“展直长度”是一样的.导入新课甲乙12思考:(1)半径为R的圆,周长是多少?(2)1°的圆心角所对弧长是多少?n°O(4)n°的圆心角所对弧长l是多少?1°C=2πR(3)n°圆心角所对的弧长是1°圆心角所对的弧长的多少倍?n
2、倍讲授新课弧长公式的推导一用弧长公式,进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的.注意算一算已知弧所对的圆心角为90°,半径是4,则弧长为____.要点归纳弧长公式例1制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l.(单位:mm,精确到1mm)解:由弧长公式,可得弧AB的长因此所要求的展直长度l=2×700+1570=2970(mm).答:管道的展直长度为2970mm.典例精析700mm700mmR=900mm(100°ACBDO由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形.半径半径OBA圆心
3、角弧OBA扇形扇形及扇形的面积二概念学习判一判:下列图形是扇形吗?S=πR2(2)圆心角为1°的扇形的面积是多少?(3)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积的多少倍?n倍(4)圆心角为n°的扇形的面积是多少?思考(1)半径为R的圆,面积是多少?公式推导要点归纳若设⊙O半径为R,圆心角为n°的扇形的面积①公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;②公式要理解记忆(即按照上面推导过程记忆).注意ABO问题:扇形的弧长公式与面积公式有联系吗?想一想扇形的面积公式与什么公式类似?ABOO类比学习试一试1.扇形的弧长和面积都由决定.扇形的半径与扇形的
4、圆心角2.已知半径为2cm的扇形,其弧长为,则这个扇形的面积S扇=.3.已知扇形的圆心角为120°,半径为2,则这个扇形的面积S扇=.例:如图,水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积.(精确到0.01cm)典例精析(1)O.BAC讨论:(1)截面上有水部分的面积是指图上哪一部分?阴影部分.O.BACD(2)O.BACD(3)(2)水面高0.3m是指哪一条线段的长?这条线段应该怎样画出来?线段DC.过点O作OD垂直符号于AB并长交圆O于C.(3)要求图中阴影部分面积,应该怎么办?阴影部分面积=扇形OAB的面积-△OA
5、B的面积解:如图,连接OA,OB,过点O作弦AB的垂线,垂足为D,交AB于点C,连接AC.∵OC=0.6,DC=0.3,∴OD=OC-DC=0.3,∴OD=DC.又AD⊥DC,∴AD是线段OC的垂直平分线,∴AC=AO=OC.从而∠AOD=60˚,∠AOB=120˚.O.BACD(3)有水部分的面积:S=S扇形OAB-SΔOABOBACD(3)S弓形=S扇形-S三角形S弓形=S扇形+S三角形OO弓形的面积=扇形的面积±三角形的面积要点归纳CB.C.D.1.已知弧所对的圆周角为90°,半径是4,则弧长为.2.如图,Rt△ABC中,∠C=90°,∠A=30°,BC=2,O
6、、H分别为AB、AC的中点,将△ABC顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过的面积为()当堂练习ABCOHC1A1H1O13.如图,⊙A、⊙B、⊙C、⊙D两两不相交,且半径都是2cm,则图中阴影部分的面积是.ABCD4.(例题变式题)如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.9cm,求截面上有水部分的面积.OABDCE弧长计算公式:扇形定义公式阴影部分面积求法:整体思想弓形公式S弓形=S扇形-S三角形S弓形=S扇形+S三角形割补法课堂小结见《学练优》本课时练习课后作业
此文档下载收益归作者所有