欢迎来到天天文库
浏览记录
ID:48531809
大小:72.78 KB
页数:4页
时间:2020-02-25
《、三角形全等的判定(SSS).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、13.2三角形全等的判定1(SSS)学习目标1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.学习重点:三角形全等的条件.学习难点:寻求三角形全等的条件.学习过程:学习过程:一、:温故知新1.怎样的两个三角形是全等三角形?2.全等三角形的性质?二、读一读,想一想,画一画,议一议1.只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?要求小组合作完成总结:
2、通过我们画图可以发现只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形_________________全等;给出两个条件画出的两个三角形也_______________全等,按这些条件画出的三角形都不能保证一定全等.3.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.①②③④①我们首先探究三个角请同学们以小组合作的方式来研究当两个三角形的三个内角分别对应相等,那么这两个三角形是时候能够全等?结论:②在刚才的探索过程中,我们已经发现三内角不能保证三角形
3、全等.下面我们就来逐一探索下一种情况.如果两个三角形的边分别对应相等,那么两个三角形是否全等?请同学们画出三边分别为3cm,4cm,6cm的三角形,并把自己画好的三角形与同组同学画的三角形叠在一起,你会发现什么?4.总结:“边边边”公理:__________________________________________________________书写格式:几何符号语言三:新知应用例1.如图,点、、、在同一直线上,,,.求证:例2.在中,,、分别为、上的点,且,,.求证:四.评价反思概括总结:1.根据边角边公理判定两个三角形全等,
4、要找出三条边对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边),并要善于运用学过的定义、公理、定理.五.课堂练习:1.下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有等边三角形都全等.2.如图,在中,,为的中点,则下列结论中:①≌;②;③平分;④,其中正确的个数为()A.1个B.2个C.3个D.4个3.如图,若,,根据可得≌.4.如图,点、、、在同一直线上,,,求证:六.课后检测:1.如图,,,
5、,,则的度数是()A.120°B.125°C.127°D.104°第1题第2题2.如图,线段与交于点,且,,则下面的结论中不正确的是()A.≌B.C.D.3.在和中,已知,,则补充条件____________,可得到≌.4.如图,在四边形中,,.求证:①;②.5.如图,已知,,求证:.6.如图,与交于点,,、是上两点,且,.求证:⑴;⑵7.如图,已知,.求证:.
此文档下载收益归作者所有