资源描述:
《各种等腰三角形难题.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、.各类等腰三角形难题例1.在⊿ABC中,AB=AC,且∠A=20°,在为AB上一点,AD=BC,连接CD.试求:∠BDC的度数.分析:题中出现相等的线段,以此为突破口,构造全等三角形.解:作∠DAE=∠B=80°,使AE=BA,(点D,E在AC两侧)连接DE,CE.∵AE=BA;AD=BC;∠DAE=∠B.∴⊿DAE≌⊿CBA(SAS),DE=AE;∠DEA=∠BAC=20°.∠CAE=∠BAE-∠BAC=60°,又AE=AB=AC.∴⊿AEC为等边三角形,DE=CE;∠DEC=∠AEC-∠DEA
2、=40°.则:∠CDE=70°;又∠ADE=80°.故∠ADC=150°,∠BDC=30°.例2.已知,如图:⊿ABC中,AB=AC,∠BAC=20°.点D和E分别在AB,AC上,且∠BCD=50°,∠CBE=60°.试求∠DEB的度数...本题貌似简单,其实不然.解:过点E作BC的平行线,交AB于F,连接CF交BE于点G,连接DG.易知⊿GEF,⊿GBC均为等边三角形.∴∠FEG=∠EFG=60°;∠AFG=140°,∠DFG=40°;∵∠BCG=50°;∠CBD=60°.∴∠BDC=50°=∠
3、BCD,则BD=BC=BG;又∠ABE=20°.故∠BGD=80°,∠DGF=180°-∠BGD-∠FGE=40°.即∠DGF=∠DFG,DF=DG;又EG=EF;DE=DE.∴⊿DGE≌⊿DFE(SSS),得:∠DEG=∠DEF=30°.所以,∠DEB=30°.例3.已知,等腰⊿ABC中,AB=AC,∠BAC=20°,D和E分别为AB和AC上的点,且∠ABE=10°,∠ACD=20°.试求:∠DEB的度数.本题相对于上面两道来说,难度又增加了许多.且看我下面的解答...解:在CA上截取CM=CB
4、,连接BM,DM,则∠CMB=∠CBM=50°.作DG∥BC,交AC于G,连接BG,交CD于F,连接FM.易知⊿BCF和⊿DGF为等边三角形,CM=CB=CF.∴∠CMF=∠CFM=80°,∠GMF=100°.∠GFM=∠GFC-∠CFM=40°;∠FGM=∠A+∠ABG=40°.即∠GFM=∠FGM;FM=GM;又∠DF=DG,DM=DM.则⊿DMF≌⊿DMG,∠DMG=∠DMF=50°.故∠DMC=130°=∠EMB;又∠DCM=∠EBM=20°.∴⊿DMC∽⊿EMB,DM/MC=EM/MB;
5、又∠DME=∠BMC=50°.∴⊿DME∽⊿CMB,∠DEM=∠CBM=50°.又∠BEC=∠ABE+∠A=30°.所以,∠DEB=∠DEG-∠BEC=50°-30°=20°.例4.如图,已知在等边三角形ABC中,D是AC的中点,E为BC延长线上一点,且CE=CD,DM⊥BC,垂足为M。求证:M是BE的中点。思路点拨:欲证M是BE的中点,已知DM⊥BC,所以想到连结BD,证BD=ED。因为△ABC是等边三角形,∠DBE=∠ABC,而由CE=CD,又可证∠E=∠ACB,所以∠1=∠E,从而问题得证。
6、..证明:因为三角形ABC是等边三角形,D是AC的中点所以∠1=∠ABC又因为CE=CD,所以∠CDE=∠E所以∠ACB=2∠E即∠1=∠E所以BD=BE,又DM⊥BC,垂足为M所以M是BE的中点(等腰三角形三线合一定理)例5.如图,在△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交AC于D,过C作BD垂线交BD的延长线于E,交BA的延长线于F,求证:BD=2CE.思路点拨:根据已知条件,易证△BFE≌△BCE,所以BF=BC,所以∠F=∠BCE,根据等腰三角形三线合一这一性质,CE=
7、FE,再证明△ABD≌△ACF,证得BD=CF,从而证得BD=2CE...证明:∵∠ABC的平分线交AC于D,∴∠FBE=∠CBE,又BE=BE,∵BE⊥CF,∴∠BEF=∠BEC,∴△BFE≌△BCE(ASA),∴CE=EF,∴CF=2CE,∵∠BAC=90°,且AB=AC,∴∠FAC=∠BAC=90°,∠ABC=∠ACB=45°,∴∠FBE=∠CBE=22.5°,∴∠F=∠ADB=67.5°,又AB=AC,∴△ABD≌△ACF(AAS),∴BD=CF,∴BD=2CE.例6.如图,在△ABC中,
8、BO平分∠ABC,CO平分∠ACB,DE过O且平行于BC,已知△ADE的周长为10cm,BC的长为5cm,求△ABC的周长..思路点拨根据题意先证明△BDO和△CEO是等腰三角形,再结合等腰三角形的性质得BD=OD,CE=EO,根据已知△ADE的周长为10cm,再加上BC的长即可得△ABC的周长.解:∵BO平分∠ABC,CO平分∠ACB,∴∠DBO=∠OBC,∠ECO=∠OCB,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠DBO=∠DOB,∠ECO=∠EOC,∴BD