欢迎来到天天文库
浏览记录
ID:48500680
大小:566.16 KB
页数:6页
时间:2020-02-05
《2015高等数学下试题及参考答案.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、装订线华南农业大学期末考试试卷(A卷)2014~2015学年第2学期 考试科目:高等数学AⅡ 考试类型:(闭卷)考试 考试时间: 120 分钟学号姓名年级专业题号一二三四总分得分评阅人得分(估计不考或考的可能性比较小的题目已删除)一、填空题(本大题共5小题,每小题3分,共15分)1.二元函数的定义域为。2.已知向量与向量垂直,则。3.直线与平面的夹角为。4.设,则。5.当参数满足条件时,级数收敛。得分二、单项选择题(本大题共5小题,每小题3分,共15分)1.微分方程的通解是()A.B.C.D.2.求极限()5装订线A.B.C.不存在D.
2、3.通过轴和点的平面方程为()A.B.C.D.4.是由曲线围成的闭区域,则()A.B.C.D.5.级数()A.发散B.条件收敛C.绝对收敛D.不能判定得分1.5CM三、计算题(本大题共7小题,每小题7分,共49分)1.求微分方程的通解。2.求幂级数的和函数。3.设由方程确定隐函数,求全微分。4.求曲线积分,其中为连接点及的直线段。5.计算,其中。6.已知级数的收敛半径为,求级数的收敛半径。7.将函数展开成的幂级数,并求其成立的区间。5装订线得分1.5CM四、解答题(本大题共3小题,每小题7分,共21分)1.抛物线被平面截成一椭圆,求这椭圆上的
3、点到原点的距离的最小值和最大值。华南农业大学期末考试试卷(A卷)2014~2015学年第2学期 考试科目:高等数学AⅡ参考答案一、填空题(本大题共5小题,每小题3分,共15分)1.2.3.4.5.二、单项选择题(本大题共5小题,每小题3分,共15分)1.A2.B3.C4.B5.C1.5CM三、计算题(本大题共7小题,每小题7分,共49分)1.求微分方程的通解。解:原方程化为,此为齐次方程………………1分令,得………………3分分离变量得积分得………………6分将代入得………………7分2.求幂级数的和函数。解:,所以,………………1分当时级数发散,
4、所以收敛域为………………2分5装订线因为………………3分所两边求导得………………5分两边再求导得…………6分两边乘以,即得………………7分3.设由方程确定隐函数,求全微分。解:设………………1分………………4分………………6分………………7分4.求曲线积分,其中为连接点及的直线段。解:………………2分………………5分………………7分5.计算,其中。解:………………2分………………5分………………7分6.已知级数的收敛半径为,求级数的收敛半径。5装订线解:级数的收敛半径为,有………………3分则………………6分即级数的收敛半径为………………7分7
5、.将函数展开成的幂级数,并求其成立的区间。解:因为………………2分………………5分成立范围为即………………7分1.5CM四、解答题(本大题共3小题,每小题7分,共21分)1.抛物线被平面截成一椭圆,求这椭圆上的点到原点的距离的最小值和最大值。解:设为椭圆上任一点,则点到原点的距离为构造拉格朗日函数………………2分………………5分解得………………6分为最小值,为最大值………………7分2.计算二重积分,其中。解:设,5装订线………………2分则………………4分所以………………5分………………6分………………7分3.已知,试确定,使曲线积分与积分路径
6、无关,并求该曲线积分当分别为时的值。解:设,,则………………1分即………………2分解得………………4分再由,得,故………………5分取积分路径,得………………7分5
此文档下载收益归作者所有