欢迎来到天天文库
浏览记录
ID:48422008
大小:36.38 KB
页数:11页
时间:2020-01-25
《新高考人教版二轮文数练习汇编--简单的逻辑联结词、全称量词与存在量词Word版含解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、新高考人教版二轮文数练习汇编课时规范练A组 基础对点练1.命题“∃x0∈(0,+∞),lnx0=x0-1”的否定是( )A.∀x∈(0,+∞),lnx≠x-1B.∀x∉(0,+∞),lnx=x-1C.∃x0∈(0,+∞),lnx0≠x0-1D.∃x0∉(0,+∞),lnx0=x0-1解析:该命题的否定是将存在量词改为全称量词,等号改为不等号即可,故选A.答案:A2.命题“∀x∈R,
2、x
3、+x2≥0”的否定是( )A.∀x∈R,
4、x
5、+x2<0B.∀x∈R,
6、x
7、+x2≤0C.∃x0∈R,
8、x0
9、+x<0D.∃x0∈R,
10、x0
11、+x≥0解析:命题的否定是否定结论,同时把量词作
12、对应改变,故命题“∀x∈R,
13、x
14、+x2≥0”的否定为“∃x0∈R,
15、x0
16、+x<0”,故选C.答案:C3.命题“∀x∈[0,+∞),x3+x≥0”的否定是( )A.∀x∈(-∞,0),x3+x<0B.∀x∈(-∞,0),x3+x≥0C.∃x0∈[0,+∞),x+x0<0D.∃x0∈[0,+∞),x+x0≥0解析:把全称量词“∀”改为存在量词“∃”,并把结论加以否定,故选C.答案:C4.已知命题p:∀x>0,总有(x+1)ex>1,则綈p为( )A.∃x0≤0,使得(x0+1)ex0≤1B.∃x0>0,使得(x0+1)ex0≤1C.∀x>0,总有(x+1)ex≤1D.∃x≤
17、0,总有(x+1)ex≤1解析:全称命题的否定是特称命题,所以命题p:∀x>0,总有(x+1)ex>1的否定是綈p:∃x0>0,使得(x0+1)ex0≤1.答案:B5.设命题p:∀x∈R,x2+1>0,则綈p为( )A.∃x0∈R,x+1>0 B.∃x0∈R,x+1≤0C.∃x0∈R,x+1<0D.∀x∈R,x2+1≤0解析:全称命题的否定,要对结论进行否定,同时要把全称量词换成存在量词,故命题p的否定为“∃x0∈R,x+1≤0”,所以选B.答案:B6.命题“∀x∈R,x2≠x”的否定是( )A.∀x∉R,x2≠xB.∀x∈R,x2=xC.∃x0∉R,x≠x0D.∃x0∈
18、R,x=x0解析:全称命题的否定是特称命题:∃x0∈R,x=x0,选D.答案:D7.设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则( )A.綈p:∀x∈A,2x∉BB.綈p:∀x∉A,2x∉BC.綈p:∃x0∉A,2x0∈BD.綈p:∃x0∈A,2x0∉B解析:由命题的否定易知选D,注意要把全称量词改为存在量词.答案:D8.命题“存在实数x0,使x0>1”的否定是( )A.对任意实数x,都有x>1B.不存在实数x0,使x0≤1C.对任意实数x,都有x≤1D.存在实数x0,使x0≤1解析:由特称命题的否定为全称命题可知,原命题的否定为:对任意实数x
19、,都有x≤1,故选C.答案:C9.已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是( )A.p∧qB.綈p∧qC.p∧綈qD.綈p∧綈q解析:对于命题p,由于x=-1时,2-1=>=3-1,所以是假命题,故綈p是真命题;对于命题q,设f(x)=x3+x2-1,由于f(0)=-1<0,f(1)=1>0,所以f(x)=0在区间(0,1)上有解,即存在x∈R,x3=1-x2,故命题q是真命题.综上,綈p∧q是真命题,故选B.答案:B10.已知命题p:∀x∈R,ex-x-1>0,则綈p是( )A.∀x∈R,ex-x-1<0B.∃x0∈R,
20、ex0-x0-1≤0C.∃x0∈R,ex0-x0-1<0D.∀x∈R,ex-x-1≤0解析:因为全称命题的否定是特称命题,所以命题p:∀x∈R,ex-x-1>0,则綈p:∃x0∈R,ex0-x0-1≤0.故选B.答案:B11.已知命题p:∃α∈R,cos(π-α)=cosα;命题q:∀x∈R,x2+1>0.则下面结论正确的是( )A.p∧q是真命题B.p∧q是假命题C.綈p是真命题D.p是假命题解析:对于p:取α=,则cos(π-α)=cosα,所以命题p为真命题;对于命题q:因为x2≥0,所以x2+1>0,所以q为真命题.由此可得p∧q是真命题.故选A.答案:A12.已知命
21、题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题是( )A.①③B.①④C.②③D.②④解析:由不等式的性质可知,命题p是真命题,命题q为假命题,故①p∧q为假命题,②p∨q为真命题,③綈q为真命题,则p∧(綈q)为真命题,④綈p为假命题,则(綈p)∨q为假命题,所以选C.答案:C13.已知命题p:“∃x0∈R,ex0-5x0-5≤0”则綈p为__________.答案:∀x∈R,ex-5x-5>014.已知命
此文档下载收益归作者所有