欢迎来到天天文库
浏览记录
ID:48365171
大小:147.73 KB
页数:7页
时间:2019-11-27
《一次函数的应用说课稿.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第四章一次函数4.一次函数的应用(第1课时)各位老师,各位评委大家好!我是新九学校的数学教师陈莹,今天我说课的课题是《一次函数的应用》第一课时,下面是我对本节课的简单分析。一、学情分析在前面的学习过程中,学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。在此基础上,引导学生根据图象等信息列出一次函数表达式的方法,并进一步感受数形结合的思想方法.且八年级学生在13—14岁之间,有一定生活经验和较强的好奇心、求知欲,已具备了思维的完整性、深刻性和实践性等思维品质,但尚待提高,学生的抽象概括能力有限.在
2、学习过程中尽可能的为学生提供更广阔的独立自由思考的空间,也鼓励学生大胆探索,调动学生的学习积极性,使学生在活动中,学会解决问题的方法。二、教材分析1.本课内容在教材中地位、特点和作用本节课是北师大版义务教育教科书八年级上第四章《一次函数》第四节的第一课时,主要内容是利用图象、表格等信息,确定一次函数的表达式.在此之前,学生已经学习一次函数的相关知识,本节既是对前面所学知识的深化与拓展,又是联系生活实际,培养学生应用数学意识和创新能力的良好素材。为今后学习实际问题与反比例函数,实际问题与二次函数的转化奠定了基础。与原教材相比,新教材更注重与实际联系,更
3、加注重培养学生掌握数形结合这一重要的思想方法;并且让学生更加明确确定一次函数的表达式需要两个独立的条件,这个问题虽然简单,但它涉及数学对象的一个本质概念---基本量.值得一提的是确定一次函数表达式,需要根据两个条件列出关于、的方程组,而二元一次方程组是下一章的学习内容,因此本节所研究的一次函数,某个参数应较易于从所给条件中获得,从而转化为通过另一个条件确定另一个参数的问题.因此,在教学中要注意控制问题的难度,对于一般问题,可在下一章的学习中再加强训练.2.教学目标的确立及依据教学目标是教学活动的起点和归宿,教学目标设计的科学性和合理性直接影
4、响教学过程的实施和教学效果的评价.基于本班学生,知识、能力、情感态度以及对新的学习所具备的相关知识掌握程度,考虑到本班学生已有的认知结构、心理特征,及本节课在教材中的地位和作用,本着以教材为基础、以课标为准绳,我确立如下三维目标:知识与技能:了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题.过程与方法:经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法;情感态度与价值观:经历从不同信息中获取一次函数表达式
5、的过程,体会到解决问题的多样性,拓展学生的思维.3.教学重难点由于函数具有较高的抽象性和动态变化过程,其中蕴含众多的数学思想,八年级学生虽然具备了一定的抽象概括能力,但要求学生自主发现实际问题如何转化成函数问题是很困难的,所以我确定本节课重点和难点是:教学重点:把实际问题转化为数学问题,建立函数模型,并能用一次函数解决问题。教学难点:把实际问题抽象成函数问题,画出函数图象,利用分段函数解决实际问题。三、说教法、学法教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞,充分发挥学生在学习中的积极性、主动性和创造性。所以在课堂教学中,只有充分发挥教师“主导、
6、点拨、总结、调控”的作用,营造起民主和谐的课堂氛围,才能实现教师角色转换,真正突出学生的主体地位.使学生课前勤学,课上会学,最终达到乐学,把“倡导自主、体现合作、引导探究、重视过程”真正落实到课堂教学之中,让素质教育走进课堂.教法:本节课与实际生活联系紧密,比较贴近生活,为了体现以学生的发展为主,遵循学生的认知规律,我主要采用设置问题情境,引导发现归纳法和启发式教学.学法:在教学过程中,为学生自主探索提供问题情境,重视学生的互动学习,让学生互动讨论,积极与同伴交流自己的想法,最后把教师讲解的要点归纳总结.四、教学过程节课设计了六个教学环节:本节课设计
7、了六个教学环节:第一环节:复习引入;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习与知识拓展;第五环节:课时小结;第六环节:作业布置.第一环节 复习引入内容:提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数具有什么性质?目的:学生回顾一次函数相关知识,温故而知新.第二环节 初步探究内容1:展示实际情境提供两个问题情境,供老师选用.实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图所示.(1)写出v与t之间的关系式;(2)下滑3秒时物体的速度是多少?分析:要求v与t之间的关系式,首先应
8、观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.实
此文档下载收益归作者所有