1、3.2 导数与函数单调性A组 基础题组1.函数y=4x2+1x的单调递增区间为( )A.(0,+∞)B.12,+∞C.(-∞,-1)D.-∞,-12答案: B 由y=4x2+1x得y'=8x-1x2,令y'>0,即8x-1x2>0,解得x>12,∴函数y=4x2+1x在12,+∞上单调递增.故选B.2.已知m是实数,函数f(x)=x2(x-m),若f'(-1)=-1,则函数f(x)的单调增区间是( ) A.-43,0B.0,43C.-∞,-43,(0,+∞)D.-∞,-43∪(0,+∞)答案: C 由题意得f'(x)=3x2
2、-2mx,∴f'(-1)=3+2m=-1,解得m=-2,∴f'(x)=3x2+4x,令f'(x)>0,解得x<-43或x>0,故f(x)的单调增区间为-∞,-43,(0,+∞).3.已知函数f(x)=x2+2cosx,若f'(x)是f(x)的导函数,则函数f'(x)的图象大致是( )答案: A 令g(x)=f'(x)=2x-2sinx,则g'(x)=2-2cosx,易知g'(x)≥0,所以函数f'(x)在R上单调递增.4.若幂函数f(x)的图象过点22,12,则函数g(x)=exf(x)的单调递减区间为( )A.(-∞,0)B.(-∞,-2)C.(-2,-1
3、)D.(-2,0)答案: D 设幂函数f(x)=xα,因为图象过点22,12,所以12=22α,α=2,所以f(x)=x2,故g(x)=exx2,则g'(x)=exx2+2exx=ex(x2+2x),令g'(x)<0,得-2