《一元二次方程》课件 (1).ppt

《一元二次方程》课件 (1).ppt

ID:48184126

大小:2.07 MB

页数:19页

时间:2020-01-16

《一元二次方程》课件 (1).ppt_第1页
《一元二次方程》课件 (1).ppt_第2页
《一元二次方程》课件 (1).ppt_第3页
《一元二次方程》课件 (1).ppt_第4页
《一元二次方程》课件 (1).ppt_第5页
资源描述:

《《一元二次方程》课件 (1).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、﹣一、复习1.什么叫方程?我们学过那些方程?2.什么叫一元一次方程?3.什么叫分式方程?要设计一座2m高的人体雕像,修雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,雕像的下部应设计为多高?雕像上部的高度AC,下部的高度BC应有如下关系:设雕像下部高xm,于是得方程整理得x2+2x-4=0x2=2(2-x)ACB2cm问题1:如图,有一块矩形铁皮,长100cm,宽50cm,在它的四角各切一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?

2、设切去的正方形的边长为xcm,则盒底的长为(100-2x)cm,宽为(50-2x)cm,根据方盒的底面积为3600cm2,得x(100-2x)(50-2x)=3600.整理,得4x2-300x+1400=0.化简,得x2-75x+350=0.②由方程②可以得出所切正方形的具体尺寸.问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?设应邀请x个队参赛,每个队要与其它(x-1)个队各赛1场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛

3、共场.列方程整理,得化简,得由方程③可以得出参赛队数.全部比赛共4×7=28场③方程①②③有什么特点?(1)这些方程的两边都是整式,(2)方程中只含有一个未知数,未知数的最高次数是2.像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.③x2-75x+350=0②x2+2x-4=0①一般地,任何一个关于x的一元二次方程,经过整理,都可以化为的形式,我们把(a,b,c为常数,a≠0)称为一元二次方程的一般形式。为什么要限制a≠0,b,c可以为零吗?想一想ax2+bx+c=0(a≠0)二次项系数

4、一次项系数常数项一元二次方程的一般形式1、判断下列方程,哪些是一元二次方程()(1)x3-2x2+5=0;(2)(3)2(x+1)2=3(x+1);(4)x2-2x=x2+1;(5)ax2+bx+c=0不是不是是不是不是例:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项.3x2-3x=5x+10.移项,合并同类项,得一元二次方程的一般形式:3x2-8x-10=0.其中二次项系数为3,一次项系数为-8,常数项为-10.解:去括号,得1.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系

5、数,一次项系数及常数项:一般式:二次项系数为5,一次项系数-4,常数项-1.一般式:二次项系数为4,一次项系数0,常数项-81.练习一般式:二次项系数为4,一次项系数8,常数项-25.一般式:二次项系数为3,一次项系数-7,常数项1.2.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;解:设其边长为x,则面积为x24x2=25一般形式4x²﹣25=0(2)一个矩形的长比宽多2,面积是100,求矩形的长x;x(x-2)=100.x2-2x-100=0.解:设长为x,则宽(

6、x-2)(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x;x·1=(1-x)2X2-3x+1=0.解:设其中的较短一段为x,则另较长一段为(1-x)(4)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长x.解:根据题意得例2、若关于x的方程(k+3)x2-kx+1=0是一元二次方程,求k的取值范围。练习:若关于x的方程是一元二次方程,求k的取值范围。∵关于x的方程(k+3)x2-kx+1=0是一元二次方程。∴k+3≠0,解得K≠﹣3.解:解:∵(k²-1)x²-(k-1)x﹢1=0是一

7、元二次方程,∴k²﹣1≠0,解得k≠±1.例题:已知x=2是关于x的方程的一个根,求2a-1的值。解:把x=2代入中得2a=6∴2a-1=5练习:1、已知x=1是关于x的一元二次方程2x²+kx-1=0的一个根,求k的值2、已知x=0是关于x的一元二次方程(a-1)x²+x+a²-1=0的一个根,求a的值k=﹣1a=﹣11.一元二次方程的概念只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式一般地,任何一个关于x的一元二次方程都可以化为的形式,我们把(a,b,c为常数,a≠0)称为一元二次方程的一般形式

8、。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。