抽拉式电磁铁电磁力的有限元分析【文献综述】

抽拉式电磁铁电磁力的有限元分析【文献综述】

ID:478046

大小:28.00 KB

页数:5页

时间:2017-08-08

抽拉式电磁铁电磁力的有限元分析【文献综述】_第1页
抽拉式电磁铁电磁力的有限元分析【文献综述】_第2页
抽拉式电磁铁电磁力的有限元分析【文献综述】_第3页
抽拉式电磁铁电磁力的有限元分析【文献综述】_第4页
抽拉式电磁铁电磁力的有限元分析【文献综述】_第5页
资源描述:

《抽拉式电磁铁电磁力的有限元分析【文献综述】》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、毕业论文文献综述工程力学抽拉式电磁铁电磁力的有限元分析1.研究现状目前有限元法已经确立了在电磁分布边值问题求解领域中的无可争议的绝对优势地位。从历史发展的整个过程来看,电磁分布边值问题求解共有图解、模拟、解析和数值计算等四种方法。只有当有限元引入后,这个领域才出现了迅速且庞大的发展。图解法(GraphicalMethods)的应用由来已久,有百年历史。由于其方法的局限,只能用于二维场域上拉普拉斯方程的求解。即使非常仔细,其精度对于现代工程设计的要求是远远不够的。但其结果比较直观,特别是对场域代表的部件之结构选择的设计者来说,通过直接的方法,

2、可获得较强的设计能力的培养。此外,图解法也适合于场域为开域的情况。当今有限元法电磁计算中的可视化后处理手段,在某种程度上,便受图解法的启发。模拟法(AnalogueMethods)通过实验测量具有相同场域方程、相同边界条件和交界条件下的模拟量,实现对电磁分布规律的求解。这种方法只能用于二维和三维场域上拉普拉斯方程的求解,它不能考虑具有各向异性介质或非线性介质场域情况下的求解问题,特别是对于三维场域情况,其造价昂贵,、工作非常繁重且适用范围小。在数值计算之前,解析法(AnalyticalMethods)的发展比较成熟和完善,主要原因是当时关于

3、电磁分布的边值问题的主要研究内容就是解析法。有些解析方法或其结果至今仍应用于工程设计中,如分离变量法,保角变换法等。还有一些当时流行的其他方法,如积分方程法、变分法,以及针对各种具体实际问题的特殊求解方法,如镜像法、逆问题法,但后者这些方法只能用于简单的场域形状和单一介质,并需要运用对称条件。尽管解析法推到过程相当繁琐和困难,解析法的发展相当庞大,包括各种具有普遍性的或特殊性的算法。解析法的主要不足是缺乏通用性,并且,主要还局限于稳态二维场的求解,通常需要较多的算法才能获得最终结果。对于非齐次问题或非线性问题仅限于非常简单的特殊情况,往往解

4、析法的推到过程需要较高的技巧及难点的突破。总之,在数值计算方法出现之前,尽管进行了大量的工作,但从其结果来看,电磁分布边值问题的求解只是非常有限的范围,数值计算方法正好弥补了这个不足。采用数值计算法,几乎能实现所有的电磁分布边值问题的求解分析。特别是结合所谓的时变问题,结合如热传导、应力分布等其他物理现象的所谓耦合问题,以及其他一些具有较大难度的特殊应用问题。另外,采用数值计算法以后,针对实际工程问题处理的思想方法也有了明显的变化,过去是尽量简化物理和数学模型以求获解,现在的标准是达到更河里的模型选择以保证解的精确度,往往选择比较复杂的模型

5、。电磁分布边值问题的数值计算方法包括有有限元差分法、有限元法、积分方程法和边界元法等四种基本类型,以及近几年来发展生产的有限元法和边界元法相结合的所谓混合法。其中,有限元法占有绝对主要的地位,具有较大的应用范围。目前,有限元法的这种优势越来越显著。有限差分法(FDM,FiniteDifereneceMethods)的基础是对求解区域内的每一个节点上偏微分的泰勒级数近似。将连续的场域离散成一些以节点为核心的小区域,对偏微分方程的微分格式进行近似处理,并考虑边界条件和交界条件的约束,获得一组以节点变量为未知数的代数方程,进行求解。一般的这些小区

6、域为长方形。对于场域内变量变化急剧的边值问题,要求网格划分比较密集,这便限制了有限差分法的应用范围。此外,有限差分法必须对所有的边界条件和交界条件进行算法处理,特别是对复杂的边界和场域内各种介质的交界的处理有一定的困难,也难于实现自动处理方式。尽管如此,直到70年代,最早的许多大型工程应用问题,如大型点击、感应炉等的电磁数值都是采用有限元差分法,并取得了令人难忘的极有价值的成果。目前在流体边值问题中,有限元差分法还有较大的应用。基于迦辽金或变分原理的有限元法(FEM,FiniteElementMethods),最早产生于力学计算中,自从在加

7、速器磁极和直流电机磁场等电磁计算中被采用开始,至今在电气工程中的每一个方面得到了广泛的应用,也是当今电气工程中研究的一个主要热点。有限元法将有偏微分方程表征的连续函数所在的封闭场域划分成有限个小区域,每一个小区域用一个选定的近似函数来代替,于是整个场域上的函数被离散化,由此获得一组近似的袋鼠方程,并联立求解,以获得该场域中函数的近似数值。有限元法最主要的特点是根据该方法编制的软件系统对于各种各样的电磁计算问题具有较强的适应性,通过前处理过程能有效地形成方程并求解。它能方便地处理非线性介质特性,如铁磁饱和特性等。它所形成的袋鼠方程具有系数矩阵

8、对称正定、稀疏等特点,所以求解容易、收敛性好、占用计算机内存量也较少。这些正是有限元能成为电气设备计算机辅助设计核心模块的优势所在。有限元法的主要缺点是对于形状和分布复杂的三维问

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。