矩阵论定义定理总结

矩阵论定义定理总结

ID:47450487

大小:1.46 MB

页数:32页

时间:2020-01-11

矩阵论定义定理总结_第页
预览图正在加载中,预计需要20秒,请耐心等待
资源描述:

《矩阵论定义定理总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、........矩阵论1.行列式的相关知识:1.1定义:由个数组成的一个n阶行列式为即所有取自不同行不同列的n个元素的乘积的代数和,其中每一项的符合由排列的奇偶性决定。n阶行列式的展开原理:定义1.1.2在n阶行列式D中,任选k行和k列(),将其交叉点上的个元素按原来位置排成一个k阶行列式M,称为D的一个k阶子式。在D中划去M所在之k行k列后余下的个元素按照原来位置排成的n-k阶行列式,称为M的余子式。定义1.1.3设D的k阶子式M在D中所在行列指标分别是和,则称为M的代数余子式,其中为M的余子式。定理1.1.1(拉普拉斯定理)设在行列式D中任意取定k行,则由这k

2、行元素所组成的一切k.专业学习资料.........阶子式与其对应的代数余子式的乘积之和等于和列式D。定理1.1.4(克莱姆法则):若线性方程组(1.1.7)的系数行列式则方程组(1.1.7)有唯一解,且,其中是将中第列换成(1.1.7)式右端的常数项所得的行列式,即该定理通常称为克莱姆法则。特别地,当时,方程组(1.1.7)又称为齐次线性方程组。若其系数行列式不为零,则由克莱姆法则知它必有唯一零解行列式的降阶定理定理1.6.1设A和D分别为n阶及m阶的方阵,则有定理1.6.2设A,B,C,D皆为n阶方阵,且满足AC=CA,则.专业学习资料.........定义1

3、.2.4向量组的极大线性无关组所含向量的个数称为这个向量组的秩。引理1.3.1若齐次线性方程组的系数矩阵的秩r

4、专业学习资料.........即乘积的秩不超过各因子的秩。定理1.3.6设A是一个矩阵,如果P是s阶可逆方阵,Q是n阶可逆方阵,那么定义1.3.5设是一个n阶方阵,A的主对角元素的和称为A的迹,并记之为,即解的判别定理定理1.4.1线性方程组有解的充要条件为。其中系数矩阵A与增广矩阵B的秩之间只有两种可能,即或.专业学习资料.........定义1.4.1齐次线性方程组(1.4.5)的一组解称为方程组(1.4.5)的一个基础解系,若1)线性无关;2)方程组(1.4.5)的任何一个解都能用线性表示。定理1.4.2若齐次线性方程组有非零解,则它的基础解系必存在,且基础

5、解系所含解的个数为,其中r为系数矩阵的秩。矩阵的初等变换与初等矩阵定义1.5.1数域P上的矩阵的下列三种变换称为初等行变换:1)以P中非零的数乘矩阵的某一行;2)把矩阵中某一行的倍数加到另一行;3)互换矩阵中两行的位置。同理定义初等列变换,统称为初等变换。定义1.5.2单位矩阵E经过一次初等变换后所得到的矩阵称为初等矩阵。定理1.5.1对一个矩阵A作一次初等行变换,相当于对A左乘一个相应的.专业学习资料.........初等矩阵。对A作一次初等列变换,则相当于对A右乘一个相应的初等矩阵。定义1.5.3矩阵A与B称为等价的,若B可由A经过一系列初等变换得到。定理1.

6、5.2初等变换不改变矩阵的秩。推论1.5.1n阶方阵可逆的充要件是它与单位矩阵等价。定理1.5.3矩阵A与B等价的充要条件是有初等矩阵使推论1.5.3两个矩阵A与B等价的充要条件为存在可逆阵P与可逆阵,使得定义1.5.4数域P上n阶方阵A与B称为合同的,若数域P上存在可逆的n阶方阵C,使合同必等价,等价不一定合同。分块矩阵的秩定理1.6.4设n阶方阵其中为阶方阵,且。则定理1.6.5设A和D分别为n阶和m阶的方阵,则定理1.6.8设A与B分别为和矩阵,则线性空间与线性变换.专业学习资料.........集合映射变换线性空间基维数坐标(略)定义2.2.2设与是n维线

7、性空间V的两个基,且则矩阵A称为由基到的过渡矩阵还有坐标变换公式定义2.2.2数域P上的两个线性空间与称为同构的,如果由到有一个双射,且1)2)其中是V中任意向量,k是P中任意数。此时就称为与的一个同构映射。定理2.2.1数域P上两个有限维线性空间同构的充要条件是它们有相同的维数。.专业学习资料.........子空间(略)定理2.3.2两个向量组生成相同子空间的充要条件是它们等价。定理2.3.3(其中是由生成的空间)定理2.3.4设W是数域P上的n维线性空间V的一个m维子空间,是W的一个基,则这组基向量必定可扩充为线性空间V的基,即在V中必定可找到个向量,使得是

8、V的一个基

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。