《解分式方程》教学设计说明书

《解分式方程》教学设计说明书

ID:47329086

大小:99.50 KB

页数:11页

时间:2019-08-15

《解分式方程》教学设计说明书_第1页
《解分式方程》教学设计说明书_第2页
《解分式方程》教学设计说明书_第3页
《解分式方程》教学设计说明书_第4页
《解分式方程》教学设计说明书_第5页
资源描述:

《《解分式方程》教学设计说明书》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、《解分式方程》的教学设计邢台县皇台底中学李改增设计理念:《数学课程标准》指出:数学教学是在老师指导下,学生积极主动地掌握数学知识、技能,发展能力,形成积极、主动的学习态度。而教师应引导学生从已有的数学现实出发,经过自己的思考,得出有关数学结论,形成数学知识、技能和能力,发展情感态度和思维品质。由此,我确定自己在本节课中起引导作用,依学生已有的数学实际,重新设计教学内容,使整节课贯穿一条节节拔高的教学主线。而学生是这节课的主体,由他们探索问题,相互解答疑惑,达成共识,逐步形成知识点,再运用知识巩固

2、与提高。教学内容:《义务教育教科书数学》(冀教版版)八年级上册第十二章第四节(课本第18页至20页)。教学目标:1.知识目标:(1)熟悉解分式方程的步骤。(2)理解解分式方程时验根的必要性。2.能力目标:会按照解分式方程的步骤解分式方程。3.情感与价值观:(1)培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。(2)运用“转化”的思想,将分式方程转化为整式方程,从而获得成就感和学习数学的自信。老师引导学生自主探索分式方程的解法,将分式方程转化为整式方程,在解题中亲身体验“转化”思

3、想。弄清了“转化”的方向,也就明白了解分式方程的步骤,解题思路自然清晰,能力随之形成。重点:1.探索解分式方程的步骤,熟练掌握分式方程的解法。2.体会解分式方程验根的必要性。难点:如何将分式方程转化为整式方程;体会分式方程验根的必要性。学情与教材分析:我所任教的学生大多头脑聪明,在老师适当的引导下,有一定的探求新知识的能力。但基础不够扎实,如计算容易出错、考虑问题不够严谨等。另外在学习本节课之前,已经学习过《解一元一次方程》。对于《解一元一次方程》大部分同学已经掌握,但由于是在七年级学习,有一定

4、的时间间隔,部分同学可能已经遗忘,给上本节课留下少许的困难。但估计绝大部分同学稍加回忆,应能接近以前的水平。本节课的内容处在《分式》这章的后半部。《分式》这章内容安排如下的:首先介绍分式及分式的基本性质,接着进行分式的加、减、乘、除的运算,之后是根据实际问题列出分式方程(但未求解)。紧跟其后的是本节课内容——解分式方程,最后一节是根据实际问题列出分式方程并求解。由此可见《解分式方程》涵盖了本章前面的内容,是本章知识的综合与提高。学习好这部分内容,不但掌握了初二阶段有关分式方程的内容,也为初三学习

5、可化为一元二次的分式方程打下了良好的基础。通过将分式方程转化为整式方程(一元一次方程)渗透了一种重要的数学思想——转化思想,即将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题。教学准备:投影仪、各例题的标准解答过程。教学过程:一、课堂导入由课本第18页(根据实际问题列出分式方程,但未求解)产生的方程入手,引入解分式方程的必要性。二、新课:例1解分式方程:(1)由学生自主探索或互相讨论完成,老师巡视学生完成情况,对于学生可能出现的几种典型的解法用投影仪展示,让同学讨论,得出较好的

6、解法。[设计意图:课文的第一个例子是:38-2/1-x=9*2/x,这个例子我估计绝大部分学生会采用交叉相乘(以往教学中学生常常提及)。虽也去掉分母,但学生还没意识到是在两边乘了最简公分母x(1-x),若我自己去解释,又有灌输之嫌。于是我干脆暂时避开此例,自己设计一个例子,这样避免了学生采用交叉相乘的方法求解][学情预设:由于本节课的内容是紧接在分式的运算之后,多数学生会对方程进行通分,发现分母相同,得出分子应相等,解出x的值。这种情况与直接去分母效果相同,但解法较繁琐。第二种情况是与解含有分母

7、的整式方程(如:)相联系,模仿整式方程的解法去分母,化为整式方程,求解整式方程得解。估计采用第二种方法的学生是少数的。另外,若没有学生采用第二种方法,我会展示自己依第二种方法的解答过程,以供学生进行讨论、比对,在讨论中感悟到第二种方法更简便。突破本节课的难点](2)引导学生检验刚才求得的解是否是原方程的解。[设计意图:让学生明白将值代入原方程检验是分式方程验根的一种方法,另一种方法是直接检验分母是否为0,这种方法将在后面涉及][学情预设:学生可将求得的值代入原方程,但书写格式不规范,如有的同学将

8、解直接代入方程两边,却仍用等号将左右两边相连,然后两边同时计算。我计划用投影仪,选择几位同学的做法显示给大家。让大家评选出最好的格式——将解得的根分别代入方程的左右两边计算,看左、右两边的结果是否一致][知识链接:对于验证一个值是否是方程的解,在求解一元一次方程时,有进行过相应的训练。绝大多数学生明白可将值代入原方程,但他们往往将值同时代入原方程。如验证是否是方程的解:解:将代入原方程,得所以显然,这种书写不够规范。应分别代入两边验证为好]例2解方程:让学生自已求解,解得,引入增根的概念。并说明

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。