欢迎来到天天文库
浏览记录
ID:46950767
大小:2.93 MB
页数:15页
时间:2019-12-01
《 四川省棠湖中学2017-2018学年高二下学期期中考试数学(理)试题(含答案解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018年春期四川省棠湖中学高二年级期中考试数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内复数对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】分析:首先化简复数,然后结合复数对应的点即可求得最终结果.详解:结合复数的运算法则可得:,该复数对应的点的坐标位于第一象限.本题选择A选项.点睛:本题主要考查复数的混合运算,意在考查学生的转化能力和计算求解能力.2.已知则使得成立的一个必要不充分条件为
2、()A.B.C.D.【答案】B【解析】分析:逐一考查所给的选项与a>b之间的关系即可求得最终结果.详解:逐一考查所给命题与的关系:是的既不充分也不必要条件;是的必要不充分条件;是的充分不必要条件;是的充分必要条件.本题选择B选项.点睛:本题主要考查命题的充分必要条件的判断及其应用,意在考查学生的转化能力和计算求解能力.3.已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>2)=0.023,则P(﹣2≤ξ≤2)=()A.0.477B.0.625C.0.954D.0.977【答案】C【解析】分析:由题意结合正态分布的性质整理计
3、算即可求得最终结果.详解:由题意可知正态分布的图象关于直线对称,则:,据此有:.本题选择C选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ4、点睛:二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.5.双曲线的渐近线方程是()A.B.C.D.【答案】B【解析】分析:由题意结合双曲线的性质求解双曲线的渐近线方程即可.详解:结合双曲线的方程,令整理可得:双曲线的渐近线方程是.本题选择B选项.点睛:本题主要考查双曲线的渐近线方程的求解,意在考查学生的5、转化能力和计算求解能力.6.在激烈的市场竞争中,广告似乎已经变得不可或缺.为了准确把握广告费与销售额之间的关系,某公司对旗下的某产品的广告费用与销售额进行了统计,发现其呈线性正相关,统计数据如下表:广告费用(万元)2345销售额(万元)26394954根据上表可得回归方程,据此模型可预测广告费为6万元的销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元【答案】B【解析】∵数据的样本中心点在线性回归直线上,回归方程中的̂为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+96、.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5,本题选择B选项.点睛:一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.7.函数在上的最大值为()A.-4B.-4C.D.2【答案】C【解析】函数的导数为f′(x)=−x2+4,由f′(x)=0,可得x=2(−2舍去),由可得f(x)在[0,3]上的最大值为.本题选择C选项.点睛:在解决类似的问题时,首7、先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y=f(x)在[a,b]内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.8.函数的单调增区间为()A.B.C.D.【答案】B【解析】函数y=x2−2lnx的定义域为(0,+∞),求函数y=x2−2lnx的导数,得,,令y′>0,解得x<−1(舍)或x>1,∴函数y=x2−2lnx的单调增区间为(1,+∞)本题选择B选项.9.小张同学计划在期末考试结束后,和其他小伙伴一块儿外出旅游,增长见识.旅行8、社为他们提供了省内的都江堰、峨眉山、九寨沟和省外的丽江古城,黄果树瀑布和凤凰古城这六个景点,由于时间和距离等原因,只能从中任取4个景点进行参观,其中黄果树瀑布不能第一个参观,且最后参观的是省内景点,则不同的旅游顺序有()A.54种B.72种C.120种D.144种【答案】D【解析】根据题意
4、点睛:二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.5.双曲线的渐近线方程是()A.B.C.D.【答案】B【解析】分析:由题意结合双曲线的性质求解双曲线的渐近线方程即可.详解:结合双曲线的方程,令整理可得:双曲线的渐近线方程是.本题选择B选项.点睛:本题主要考查双曲线的渐近线方程的求解,意在考查学生的
5、转化能力和计算求解能力.6.在激烈的市场竞争中,广告似乎已经变得不可或缺.为了准确把握广告费与销售额之间的关系,某公司对旗下的某产品的广告费用与销售额进行了统计,发现其呈线性正相关,统计数据如下表:广告费用(万元)2345销售额(万元)26394954根据上表可得回归方程,据此模型可预测广告费为6万元的销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元【答案】B【解析】∵数据的样本中心点在线性回归直线上,回归方程中的̂为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+9
6、.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5,本题选择B选项.点睛:一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.7.函数在上的最大值为()A.-4B.-4C.D.2【答案】C【解析】函数的导数为f′(x)=−x2+4,由f′(x)=0,可得x=2(−2舍去),由可得f(x)在[0,3]上的最大值为.本题选择C选项.点睛:在解决类似的问题时,首
7、先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y=f(x)在[a,b]内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.8.函数的单调增区间为()A.B.C.D.【答案】B【解析】函数y=x2−2lnx的定义域为(0,+∞),求函数y=x2−2lnx的导数,得,,令y′>0,解得x<−1(舍)或x>1,∴函数y=x2−2lnx的单调增区间为(1,+∞)本题选择B选项.9.小张同学计划在期末考试结束后,和其他小伙伴一块儿外出旅游,增长见识.旅行
8、社为他们提供了省内的都江堰、峨眉山、九寨沟和省外的丽江古城,黄果树瀑布和凤凰古城这六个景点,由于时间和距离等原因,只能从中任取4个景点进行参观,其中黄果树瀑布不能第一个参观,且最后参观的是省内景点,则不同的旅游顺序有()A.54种B.72种C.120种D.144种【答案】D【解析】根据题意
此文档下载收益归作者所有