欢迎来到天天文库
浏览记录
ID:46071661
大小:55.50 KB
页数:3页
时间:2019-11-20
《初中数学开放性试题的解题策略探讨》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、初中数学开放性试题的解题策略探讨初中数学开放性试题的解题策略探讨近几年,开放性试题市于变化多样、设计新颖等优势,广泛地应用在初中数学的教学中•开放性试题不仅使数学题型得到丰富,还能够让学生在解题过程的思维得到全面启发•本文就初中数学开放性试题的解题方法进行全面分析.1.以开放性的问题作为原点,通过讨论、体验、探索、发现,使初屮的数学结构知识能够重建,掌握数学的变化规律,解决问题教师在进行开放性教学的过程中,学生在解决问题时从问题的根本出发,分析概括题目所包含的信息,进而重组所学知识的结构,通过猜想和联想进行延伸和拓展,从而形成全新的知识结构,最后利用新的知识把问题解决•比如:假设已
2、知点P(x,y)在第二象限,而且yWx+4,其中,x,y都是整数,耍求学生至少写出一个与上述条件相符合的点P的坐标•我们根据上述条件可以得知,x<0,y>0,所以x>-4,而且x是整数,所以x二-3、-2、-1・当x二-3时,y为1・当x二-2时,y可以等于1、2;当x二-1时,y可以等于1、2、3•所以有六个答案符合条件,学生只要能写出一个就可以了.2•利用联想类比,逐次地进行扩展,在原来的知识点上构建具有价值的新的认知结构,在构建的认知结构的基础上解决问题教师在对学生进行开放性试题教学时,学生一定要运用类比和联想,因为这是表现抽象思维的一种形式,学生只有不断地对开放性问题进行分
3、析,再加上适当的类比和联想,才能有效地解决开放性问题•比如:有一个函数,让两位学生分别说出函数的一个特点•甲:函数在第一象限内y值会随着x的逐渐增大而增大;乙:函数的图象经过第二象限•然后让学生在两位同学提出的特点的基础上写一个符合特点的函数解析式•根据甲和乙的已知条件可以得出函数不属于止反比例的函数,因此它只能是二次函数或者是一次函数•之后把函数的性质和图象位置结合起來可以得出如果函数是一次函数,那么一次项的系数和常数项都会大于零;如果是二次函数,那么它的开口方向应该是向上的,顶点可以在y轴的正半轴位置或者二、三象限•这道题的答案并不是唯一的,它只要形如y二ax2+bx+c(a>
4、O,b^O);y二kx+b(k>0,b>0)就能成立.3.将归纳简单化,探寻规律,形成新的猜测,经过演绎证明之后,在得出新的结论的背景下将问题解决开放性试题的解决的关键主要是在于对数学原理、概念和定理的有效应用•所以,教师在学生进行积累知识和学习知识的过程中,必须要让学生掌握在数学屮遇到的最基本的一些解法等,同时教师还应该让学生多进行练习,多给学生做一些多解的题目进行训练,并且分析不同的解法具有什么样的特点,使学生的思维更为活跃,为学生解决开放性试题奠定良好的基础.比如:已知两个三角形的一边及另两边的对角分别对应和等,然后让学生确定这两个三角形存在的全等关系•要想解决这道题,首先要
5、求学生必须能够很好地掌握有关全等三角形的判定方法等知识,而且学生还必须能够弄懂这两个三角形不确定就是全等的,这样学生才能有效地对着两个三角形进行深入的探究和分析•那么,这两个三角形是否会有全等的可能?根据研究和画图可以发现,(1)两边如对应相等若其中一边的对角属于直角,则能够证明两个三角形属于全等;(2)如果这两个对应三角形的角不是直角,而是钝角,那么这两个三角形也能够证明是全等的•它的原因主要是因为这道题的条件和得出结论的解题逻辑所包含的关系不是充分的,所以才导致题目为开放性题目.4.为学生创造一个较为合理的情境,建立起模型,从多个角度对问题进行思考,有效地解决问题教师在提供开放
6、性试题给学生时,应该从学生的角度出发,同时为学生创设一个较为合理的情境氛围,让学生相互讨论问题,同时让学生构建起一个较为清晰的解题思路和模型,使学生从多个角度对题冃进行思考,有效地解决问题•教师应该只起到辅助的作用,让学生成为学习的主体•开放性教学可以归纳为儿个步骤,主要是设定问题,到审题,然后是数学
此文档下载收益归作者所有