高中数学(解决有关测量距离的问题)示范教案新人教A版

高中数学(解决有关测量距离的问题)示范教案新人教A版

ID:45637035

大小:348.00 KB

页数:6页

时间:2019-11-15

高中数学(解决有关测量距离的问题)示范教案新人教A版_第1页
高中数学(解决有关测量距离的问题)示范教案新人教A版_第2页
高中数学(解决有关测量距离的问题)示范教案新人教A版_第3页
高中数学(解决有关测量距离的问题)示范教案新人教A版_第4页
高中数学(解决有关测量距离的问题)示范教案新人教A版_第5页
资源描述:

《高中数学(解决有关测量距离的问题)示范教案新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.2 应用举例1.2.1 解决有关测量距离的问题从容说课解斜三角形知识在实际问题中有着广泛的应用,如测量、航海等都要用到这方面的知识.对于解斜三角形的实际问题,我们要在理解一些术语(如坡角、仰角、俯角、方位角、方向角等)的基础上,正确地将实际问题中的长度、角度看成三角形相应的边和角,创造可解的条件,综合运用三角函数知识以及正弦定理和余弦定理来解决.学习这部分知识有助于增强学生的数学应用意识和解决实际问题的能力.本节的例1、例2是两个有关测量距离的问题.例1是测量从一个可到达的点到一个不可到达的点之间的距离问题,例2是测量两个不可到达的点之间距离的问题

2、.对于例1可以引导学生分析这个问题实际上就是已知三角形两个角和一边解三角形的问题,从而可以用正弦定理去解决.对于例2首先把求不可到达的两点A、B之间的距离转化为应用余弦定理求三角形的边长的问题,然后把求未知的BC和AC的问题转化为例1中测量可到达的一点与不可到达的一点之间的距离问题.教学重点分析测量问题的实际情景,从而找到测量距离的方法.教学难点实际问题向数学问题转化思路的确定,即根据题意建立数学模型,画出示意图.教具准备三角板、直尺、量角器等三维目标一、知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量

3、相关术语,如:坡度、俯角、方向角、方位角等.二、过程与方法1.首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫.其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题.对于例2这样的开放性题目要鼓励学生讨论,引导学生从多角度发现问题并进行适当的指点和矫正.2.通过解三角形的应用的学习,提高解决实际问题的能力.三、情感态度与价值观1.激发学生学习数学的兴趣,

4、并体会数学的应用价值;2.通过解斜三角形在实际中的应用,要求学生体会具体问题可以转化为抽象的数学问题,以及数学知识在生产、生活实际中所发挥的重要作用.同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力.教学过程导入新课师6/6前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形

5、等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施.如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性.于是上面介绍的问题是用以前的方法所不能解决的.今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离.推进新课解决实际测量问题的过程一般要充分认真理解题意,正确作出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解.[例题剖析]【例1】如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是

6、55m,∠BAC=51°,∠ACB=75°.求A、B两点的距离.(精确到0.1m)师(启发提问)1:△ABC中,根据已知的边和对应角,运用哪个定理比较恰当?师(启发提问)2:运用该定理解题还需要哪些边和角呢?请学生回答.生从题中可以知道角A和角C,所以角B就可以知道,又因为AC可以量出来,所以应该用正弦定理.生这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边.解:根据正弦定理,得,≈65.7(m).

7、答:A、B两点间的距离为65.7米.[知识拓展]变题:两灯塔A、B与海洋观察站C的距离都等于Akm,灯塔A在观察站C的北偏东30°,灯塔B在观察站C南偏东60°,则A、B之间的距离为多少?老师指导学生画图,建立数学模型.解略:km.【例2】如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法[教师精讲]这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题.首先需要构造三角形,所以需要确定C、D两点.根据正弦定理中已知三角形的任意两个内角与一边即可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出A、B的

8、距离.解:测量者可以在河岸边选定两点C、D,测得C

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。