欢迎来到天天文库
浏览记录
ID:45337479
大小:409.62 KB
页数:7页
时间:2019-11-12
《2019_2020学年高中数学第1章集合与函数概念1.2.2函数的表示法(第1课时)函数的表示法学案新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第1课时 函数的表示法学习目标核心素养1.掌握函数的三种表示方法:解析法、图象法、列表法.(重点)2.会根据不同的需要选择恰当的方法表示函数.(难点)1.通过函数表示的图象法培养直观想象素养.2.通过函数解析式的求法培养运算素养.函数的表示法思考:任何一个函数都可以用解析法、列表法、图表法三种形式表示吗?[提示] 不一定.并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D(x)=列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.1.已知函数f(x)由下表给出,则f(3)等于( )x1≤x<2222、)123A.1 B.2C.3D.不存在C [∵当23、示出来.[解] ①列表法如下:x(台)12345y(元)3000600090001200015000x(台)678910y(元)1800021000240002700030000②图象法:如图所示.③解析法:y=3000x,x∈{1,2,3,…,10}.列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.在用三种方法表示函数时要注意:①解析法必须注明函数的定义域;②列表法中选取的自变量要有代表性,应能反映定义域的特征;③图象法中要注意是否连线.1.(1)某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,4、横轴表示出发后的时间,则较符合该学生走法的是( )A B C D(2)由下表给出函数y=f(x),则f(f(1))等于( )x12345y45321A.1 B.2C.4D.5(1)D (2)B [(1)结合题意可知,该生离校的距离先快速减少,又较慢减少,最后到0,故选D.(2)由题意可知,f(1)=4,f(4)=2,∴f(f(1))=f(4)=2,故选B.]图象的画法及应用【例2】 作出下列函数的图象并求出其值域.(1)y=-x,x∈{0,1,-2,3};(2)y=,x∈[2,+∞);(3)y=x2+2x,x∈[-2,2).[解] (1)列表x01-235、y0-12-3函数图象只是四个点(0,0),(1,-1),(-2,2),(3,-3),其值域为{0,-1,2,-3}.(2)列表x2345…y1…当x∈[2,+∞)时,图象是反比例函数y=的一部分,观察图象可知其值域为(0,1].(3)列表x-2-1012y0-1038画图象,图象是抛物线y=x2+2x在-2≤x<2之间的部分.由图可得函数的值域为[-1,8).描点法作函数图象的三个关注点(1)画函数图象时首先关注函数的定义域,即在定义域内作图.(2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象.(3)要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等.要分清这些关6、键点是实心点还是空心圈.提醒:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等.2.画出下列函数的图象:(1)y=x+1(x≤0);(2)y=x2-2x(x>1,或x<-1).[解] (1)y=x+1(x≤0)表示一条射线,图象如图①.(2)y=x2-2x=(x-1)2-1(x>1,或x<-1)是抛物线y=x2-2x去掉-1≤x≤1之间的部分后剩余曲线.如图②.函数解析式的求法[探究问题]已知f(x)的解析式,我们可以用代入法求f(g(x)),反之,若已知f(g(x)),如何求f(x).提示:若已知f(g(x))的解析式,我们可以用换元法或配凑法求f(x).【例3】 (1)已7、知f(+1)=x-2,则f(x)=________;(2)已知函数f(x)是一次函数,若f(f(x))=4x+8,则f(x)=________;(3)已知函数f(x)对于任意的x都有f(x)-2f(-x)=1+2x,则f(x)=________.思路点拨:(1)用换元法或配凑法求解;(2)用待定系数法求解;(3)用方程组法求解.(1)x2-4x+3(x≥1) (2)2x+或-2x-8 (3)x-1 [(1)法一(换元法):令t=+1,则t≥1,
2、)123A.1 B.2C.3D.不存在C [∵当23、示出来.[解] ①列表法如下:x(台)12345y(元)3000600090001200015000x(台)678910y(元)1800021000240002700030000②图象法:如图所示.③解析法:y=3000x,x∈{1,2,3,…,10}.列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.在用三种方法表示函数时要注意:①解析法必须注明函数的定义域;②列表法中选取的自变量要有代表性,应能反映定义域的特征;③图象法中要注意是否连线.1.(1)某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,4、横轴表示出发后的时间,则较符合该学生走法的是( )A B C D(2)由下表给出函数y=f(x),则f(f(1))等于( )x12345y45321A.1 B.2C.4D.5(1)D (2)B [(1)结合题意可知,该生离校的距离先快速减少,又较慢减少,最后到0,故选D.(2)由题意可知,f(1)=4,f(4)=2,∴f(f(1))=f(4)=2,故选B.]图象的画法及应用【例2】 作出下列函数的图象并求出其值域.(1)y=-x,x∈{0,1,-2,3};(2)y=,x∈[2,+∞);(3)y=x2+2x,x∈[-2,2).[解] (1)列表x01-235、y0-12-3函数图象只是四个点(0,0),(1,-1),(-2,2),(3,-3),其值域为{0,-1,2,-3}.(2)列表x2345…y1…当x∈[2,+∞)时,图象是反比例函数y=的一部分,观察图象可知其值域为(0,1].(3)列表x-2-1012y0-1038画图象,图象是抛物线y=x2+2x在-2≤x<2之间的部分.由图可得函数的值域为[-1,8).描点法作函数图象的三个关注点(1)画函数图象时首先关注函数的定义域,即在定义域内作图.(2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象.(3)要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等.要分清这些关6、键点是实心点还是空心圈.提醒:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等.2.画出下列函数的图象:(1)y=x+1(x≤0);(2)y=x2-2x(x>1,或x<-1).[解] (1)y=x+1(x≤0)表示一条射线,图象如图①.(2)y=x2-2x=(x-1)2-1(x>1,或x<-1)是抛物线y=x2-2x去掉-1≤x≤1之间的部分后剩余曲线.如图②.函数解析式的求法[探究问题]已知f(x)的解析式,我们可以用代入法求f(g(x)),反之,若已知f(g(x)),如何求f(x).提示:若已知f(g(x))的解析式,我们可以用换元法或配凑法求f(x).【例3】 (1)已7、知f(+1)=x-2,则f(x)=________;(2)已知函数f(x)是一次函数,若f(f(x))=4x+8,则f(x)=________;(3)已知函数f(x)对于任意的x都有f(x)-2f(-x)=1+2x,则f(x)=________.思路点拨:(1)用换元法或配凑法求解;(2)用待定系数法求解;(3)用方程组法求解.(1)x2-4x+3(x≥1) (2)2x+或-2x-8 (3)x-1 [(1)法一(换元法):令t=+1,则t≥1,
3、示出来.[解] ①列表法如下:x(台)12345y(元)3000600090001200015000x(台)678910y(元)1800021000240002700030000②图象法:如图所示.③解析法:y=3000x,x∈{1,2,3,…,10}.列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.在用三种方法表示函数时要注意:①解析法必须注明函数的定义域;②列表法中选取的自变量要有代表性,应能反映定义域的特征;③图象法中要注意是否连线.1.(1)某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,
4、横轴表示出发后的时间,则较符合该学生走法的是( )A B C D(2)由下表给出函数y=f(x),则f(f(1))等于( )x12345y45321A.1 B.2C.4D.5(1)D (2)B [(1)结合题意可知,该生离校的距离先快速减少,又较慢减少,最后到0,故选D.(2)由题意可知,f(1)=4,f(4)=2,∴f(f(1))=f(4)=2,故选B.]图象的画法及应用【例2】 作出下列函数的图象并求出其值域.(1)y=-x,x∈{0,1,-2,3};(2)y=,x∈[2,+∞);(3)y=x2+2x,x∈[-2,2).[解] (1)列表x01-23
5、y0-12-3函数图象只是四个点(0,0),(1,-1),(-2,2),(3,-3),其值域为{0,-1,2,-3}.(2)列表x2345…y1…当x∈[2,+∞)时,图象是反比例函数y=的一部分,观察图象可知其值域为(0,1].(3)列表x-2-1012y0-1038画图象,图象是抛物线y=x2+2x在-2≤x<2之间的部分.由图可得函数的值域为[-1,8).描点法作函数图象的三个关注点(1)画函数图象时首先关注函数的定义域,即在定义域内作图.(2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象.(3)要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等.要分清这些关
6、键点是实心点还是空心圈.提醒:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等.2.画出下列函数的图象:(1)y=x+1(x≤0);(2)y=x2-2x(x>1,或x<-1).[解] (1)y=x+1(x≤0)表示一条射线,图象如图①.(2)y=x2-2x=(x-1)2-1(x>1,或x<-1)是抛物线y=x2-2x去掉-1≤x≤1之间的部分后剩余曲线.如图②.函数解析式的求法[探究问题]已知f(x)的解析式,我们可以用代入法求f(g(x)),反之,若已知f(g(x)),如何求f(x).提示:若已知f(g(x))的解析式,我们可以用换元法或配凑法求f(x).【例3】 (1)已
7、知f(+1)=x-2,则f(x)=________;(2)已知函数f(x)是一次函数,若f(f(x))=4x+8,则f(x)=________;(3)已知函数f(x)对于任意的x都有f(x)-2f(-x)=1+2x,则f(x)=________.思路点拨:(1)用换元法或配凑法求解;(2)用待定系数法求解;(3)用方程组法求解.(1)x2-4x+3(x≥1) (2)2x+或-2x-8 (3)x-1 [(1)法一(换元法):令t=+1,则t≥1,
此文档下载收益归作者所有