2019_2020学年高中数学第一章集合与常用逻辑用语1.5全称量词与存在量词讲义新人教A版

2019_2020学年高中数学第一章集合与常用逻辑用语1.5全称量词与存在量词讲义新人教A版

ID:44805975

大小:86.08 KB

页数:7页

时间:2019-10-29

2019_2020学年高中数学第一章集合与常用逻辑用语1.5全称量词与存在量词讲义新人教A版_第1页
2019_2020学年高中数学第一章集合与常用逻辑用语1.5全称量词与存在量词讲义新人教A版_第2页
2019_2020学年高中数学第一章集合与常用逻辑用语1.5全称量词与存在量词讲义新人教A版_第3页
2019_2020学年高中数学第一章集合与常用逻辑用语1.5全称量词与存在量词讲义新人教A版_第4页
2019_2020学年高中数学第一章集合与常用逻辑用语1.5全称量词与存在量词讲义新人教A版_第5页
资源描述:

《2019_2020学年高中数学第一章集合与常用逻辑用语1.5全称量词与存在量词讲义新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.5 全称量词与存在量词最新课程标准:(1)全称量词与存在量词.通过已知的数学实例,理解全称量词与存在量词的意义.(2)全称量词命题与存在量词命题的否定.①能正确使用存在量词对全称量词命题进行否定.②能正确使用全称量词对存在量词命题进行否定.知识点一 全称量词和全称量词命题全称量词所有的、任意一个、一切、任给符号∀全称量词命题含有全称量词的命题形式“对M中任意一个x,有p(x)成立”,可简记为“∀x∈M,p(x)”知识点二 存在量词和存在量词命题存在量词存在一个、至少有一个、有些、有的符号表示∃存在量词命题含有存在量词的命题形式“存在M中的一个x,使p(x)成立”,可用符号记为“∃

2、x∈M,p(x)” 全称量词命题与存在量词命题的区别(1)全称量词命题中的全称量词表明给定范围内所有对象都具有某一性质,无一例外,强调“整体、全部”.(2)存在量词命题中的存在量词则表明给定范围内的对象有例外,强调“个别、部分”.知识点三 全称量词命题和存在量词命题的否定1.全称量词命题:∀x∈M,p(x),它的否定:∃x∈M,綈p(x).2.存在量词命题:∃x∈M,p(x),它的否定:∀x∈M,綈p(x). 全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题.[教材解难]1.教材P24思考语句(1)(2)中含有变量x,由于不知道变量x代表什么数,无法判断它们的真假,

3、所以它们不是命题.语句(3)在(1)的基础上,用短语“所有的”对变量x进行限定;语句(4)在(2)的基础上,用短语“任意一个”对变量x进行限定,从而使(3)(4)成为可以判断真假的语句,因此语句(3)(4)是命题.2.教材P25思考(1)(2)不是命题.语句(3)在(1)的基础上,用短语“存在一个”对变量x的取值进行限定;语句(4)在(2)的基础上,用“至少有一个”对变量x的取值进行限定,从而使(3)(4)变成了可以判断真假的陈述句,因此(3)(4)是命题.[基础自测]1.下列命题中全称量词命题的个数是(  )①任意一个自然数都是正整数;②所有的素数都是奇数;③有的正方形不是菱形;④

4、三角形的内角和是180°.A.0B.1C.2D.3解析:命题①②含有全称量词,而命题④可以叙述为“每一个三角形的内角和都是180°”,③是存在量词命题,故有三个全称量词命题.答案:D2.下列命题中存在量词命题的个数是(  )①至少有一个偶数是质数;②∃x∈R,x2≤0;③有的奇数能被2整除.A.0B.1C.2D.3解析:①中含有存在量词“至少”,所以是存在量词命题;②中含有存在量词符号“∃”,所以是存在量词命题;③中含有存在量词“有的”,所以是存在量词命题.答案:D3.命题“存在实数x,使x>1”的否定是(  )A.对任意实数x,都有x>1B.不存在实数x,使x≤1C.对任意实数x,

5、都有x≤1D.存在实数x,使x≤1解析:命题“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”.答案:C4.命题“对任意x∈R,

6、x-2

7、+

8、x-4

9、>3”的否定是________.解析:该命题是全称量词命题,因为含有量词“任意”,其否定应该是存在量词命题,既要改变量词,又要否定结论,故命题的否定是:“存在x∈R,使得

10、x-2

11、+

12、x-4

13、≤3”.答案:存在x∈R,使得

14、x-2

15、+

16、x-4

17、≤3题型一 全称量词命题与存在量词命题的判断与其真假[经典例题]例1 判断下列命题哪些是全称量词命题,并判断其真假.(1)对任意x∈R,x2>0;(2)有些无理数的平方也是无理数;(3)

18、对顶角相等;(4)存在x=1,使方程x2+x-2=0;(5)对任意x∈{x

19、x>-1},使3x+4>0;(6)存在a=1且b=2,使a+b=3成立.【解析】 (1)(3)(5)是全称量词命题,(1)是假命题,∵x=0时,x2=0.(3)是真命题.(5)是真命题.正确地识别命题中的全称量词,是解决问题的关键.方法归纳(1)要判定全称量词命题是真命题,需要判断所有的情况都成立;如果有一种情况不成立,那么这个全称量词命题就是假命题.(2)要判定存在量词命题是真命题,只需找到一种情况成立即可;如果找不到使命题成立的特例,那么这个存在量词命题是假命题.跟踪训练1 指出下列命题中,哪些是全称量词

20、命题,哪些是存在量词命题,并判断真假:(1)若a>0,且a≠1,则对任意实数x,ax>0;(2)对任意实数x1,x2,若x10(a>0,a≠1)恒成立,∴命题(1)是真命题.(2)存在x1=0,x2=π,x10.∴命题(3)是假命题. 

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。