资源描述:
《高考数学第9章统计与统计案例第2节用样本估计总体教学案(含解析)理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二节 用样本估计总体[考纲传真] 1.了解分布的意义与作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差);(2)决定组距与组数;(3)将数据分组;(4)列频率分布表
2、;(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.茎叶图的优点茎叶图的优点是不但可以记录所有信息,而且可以随时记录,这对数据的记录和表示都能带来方便.注意:茎叶图中茎是指中间的一列数,叶是从茎的旁边生长出来的数.4.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)
3、中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把称为a1,a2,…,an这n个数的平均数.(4)标准差与方差:设一组数据x1,x2,x3,…,xn的平均数为,则这组数据的标准差和方差分别是s=s2=1.频率分布直方图的3个结论(1)小长方形的面积=组距×=频率.(2)各小长方形的面积之和等于1.(3)小长方形的高=,所有小长方形高的和为.2.平均数、方差的公式推广(1)若数据x1,x2,…,xn的平均数为,那么mx1+a,mx2+a,mx3+a,…,mxn+a的平均数是m
4、+a.(2)数据x1,x2,…,xn的方差为s2.①数据x1+a,x2+a,…,xn+a的方差也为s2;②数据ax1,ax2,…,axn的方差为a2s2.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.()(2)一组数据的方差越大,说明这组数据越集中.()(3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.()(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.()[答案] (1)√
5、 (2)× (3)√ (4)×2.(教材改编)一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为()A.4B.8C.12D.16B [设频数为n,则=0.25,∴n=32×=8.]3.(教材改编)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是()A.91.5和91.5B.91.5和92C.91和91.5D.92和92A [∵这组数据由小到大排列为87,89,90,91,92,93,94,96,∴中位数是=91.5,平均数==91.5.]4.某校为了了解教科研工作开展状况与教师年龄之间的关系
6、,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60],由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.48 [由频率分布直方图可知45岁以下的教师的频率为5×(0.040+0.080)=0.6,所以共有80×0.6=48(人).]5.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.0.1 [5个数的平均数==5.1,所以它们的方差s2=[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.
7、1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.]茎叶图的应用1.(2019·成都检测)某学生在一门功课的22次考试中,所得分数茎叶图如图所示,则此学生该门功课考试分数的极差与中位数之和为()A.117B.118 C.118.5 D.119.5B [22次考试中,所得分数最高的为98,最低的为56,所以极差为98-56=42,将分数从小到大排列,中间两数为76,76,所以中位数为76,所以此学生该门功课考试分数的极差与中位数之和为42+76=118.]2.(2019·泉州质检)某中学奥数培训班共有14人,分为两个小组,在一次阶段测试
8、中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则n-m的值是()A.5B.6C.7D.8B