高考数学复习点拨 几类递推数列通项公式的常见类型及解法新人教A版

高考数学复习点拨 几类递推数列通项公式的常见类型及解法新人教A版

ID:43426545

大小:273.50 KB

页数:3页

时间:2019-10-02

高考数学复习点拨 几类递推数列通项公式的常见类型及解法新人教A版_第1页
高考数学复习点拨 几类递推数列通项公式的常见类型及解法新人教A版_第2页
高考数学复习点拨 几类递推数列通项公式的常见类型及解法新人教A版_第3页
资源描述:

《高考数学复习点拨 几类递推数列通项公式的常见类型及解法新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、几类递推数列通项公式的常见类型及解法递推数列问题成为高考命题的热点题型,对于由递推式所确定的数列通项公式问题,通常可对递推式的变形转化为等差数列或等比数列.下面将以常见的几种递推数列入手,谈谈此类数列的通项公式的求法.一、型(d为常数)形如的递推数列求通项公式,将此类数列变形得,再由等差数列的通项公式可求得an.例1已知数列中,求的通项公式.解:∵∴∴是以为首项,3为公差的等差数列.∴为所求的通项公式.二、型形如的递推数列求通项公式,可用差分法.例2已知数列中满足a1=1,,求的通项公式.解:作差,则-=-1,

2、-=-2,-=-3,……,,将上面n-1个等式相加得……+[]∴=为所求的通项公式.三、型形如的递推数列求通项公式,将此类数列变形得,再由等比数列的通项公式可求得an.例3已知数列中满足a1=1,,求的通项公式.解:∵∴∴是以为首项,2为公比的等比数列.用心爱心专心∴为所求的通项公式.四、型形如的递推数列求通项公式,可用累乘法.例4已知数列中满足a1=1,,求的通项公式.解:∵∴.∴==∴∴为所求的通项公式.五、型(c,d为常数)形如的递推数列求通项公式,可通过适当换元,转换成等比数列或等差数列求解.例5已知中

3、且求此数列的,通项公式.解:,则.与进行比较,可得t=1,则有.设,则有.∴是以为首项,2为公比的等比数列,∴六、型(k为常数)形如的递推数列求通项公式,可对已知递推式适当变形,通过累加或累积求得通项.例6已知数列中,=,(n≥2),求.解:将原递推式化作:,则用心爱心专心两式相减得∴数列{}是以首项为,公比为的等比数列.∴=×,又∴=.七、型(c,d为常数)形如的递推数列求通项公式,可通过适当换元,转换成等比数列或等差数列求解.例7已知数列,=1,,(,≥2),求.解:∵∴∴{}是以2为公比,-为首项的等比数

4、列.∴∴==评注:可以变形为,则可从p+q=c,pq=-d,解得p,q,于是{}是公比为q的等比数列,这样就可转化为类型六进行求解.小结:等差数列或等比数列是两类最基本的数列,是数列部分的重点,也是高考考查的热点.而主要考查学生分析问题和解决问题的能力,这个能力往往集中在“转化”的水平上.也就是说,把不同的递推公式,经过相应的变形手段,转化成比较熟悉的等差数列或等比数列进行求解.用心爱心专心

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。