欢迎来到天天文库
浏览记录
ID:43418662
大小:243.00 KB
页数:4页
时间:2019-10-02
《福建省长泰一中高考数学一轮复习《平面解析几何初步》教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、福建省长泰一中高考数学一轮复习《平面解析几何初步》教案考纲导读1.掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.2.会用二元一次不等式表示平面区域.3.了解简单的线性规划问题,了解线性规划的意义,并会简单的应用.4.了解解析几何的基本思想,了解用坐标法研究几何问题的方法.5.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念.简单的线性规划直线的倾斜角和斜率直线方程的四种形式两条直线的位置关系直线圆的方程圆的一般方程圆的参数方程直线和圆圆的标准方程曲线和方程知识网络高考导航在近几年的高考
2、试题中,两点间的距离公式、中点坐标公式、直线方程的点斜式、斜截式、一般式、斜率公式及两条直线的位置关系,圆的方程及直线与圆、圆与圆的位置关系是考查的热点.但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,近年来,在高考中经常考查,但基本上以中易题出现.考查的数学思想方法,主要是数形结合、分类讨论、方程的思想和待定系数法等.第1课时直线的方程基础过关线的斜率不存在,此时直线的倾斜角为90°.3.直线方程的五种形式名称方程适用范围斜截式点斜式两点式截距式一般式典型例题例1.已知直线(2m2+m-
3、3)x+(m2-m)y=4m-1.①当m=时,直线的倾斜角为45°.②当m=时,直线在x轴上的截距为1.③当m=时,直线在y轴上的截距为-.④当m=时,直线与x轴平行.⑤当m=时,直线过原点.解:(1)-1⑵2或-⑶或-2⑷-⑸变式训练1.(1)直线3y+x+2=0的倾斜角是()A.30°B.60°C.120°D.150°(2)设直线的斜率k=2,P1(3,5),P2(x2,7),P(-1,y3)是直线上的三点,则x2,y3依次是()A.-3,4B.2,-3C.4,-3D.4,3(3)直线l1与l2关于x轴对称,l1的斜率是-,则l2的斜率是()A.B.-C.D.-(4)直
4、线l经过两点(1,-2),(-3,4),则该直线的方程是.解:(1)D.提示:直线的斜率即倾斜角的正切值是-.(2)C.提示:用斜率计算公式.∴=(2,4),=(1,2),∴=2.又∵与有公共点B,∴A、B、C三点共线.变式训练2.设a,b,c是互不相等的三个实数,如果A(a,a3)、B(b,b3)、C(c,c3)在同一直线上,求证:a+b+c=0.证明∵A、B、C三点共线,∴kAB=kAC,∴,化简得a2+ab+b2=a2+ac+c2,∴b2-c2+ab-ac=0,(b-c)(a+b+c)=0,∵a、b、c互不相等,∴b-c≠0,∴a+b+c=0.例3.已知实
5、数x,y满足y=x2-2x+2(-1≤x≤1).试求:的最大值与最小值.解:由的几何意义可知,它表示经过定点P(-2,-3)与曲线段AB上任一点(x,y)的直线的斜率k,如图可知:kPA≤k≤kPB,由已知可得:A(1,1),B(-1,5),∴≤k≤8,故的最大值为8,最小值为.变式训练3.若实数x,y满足等式(x-2)2+y2=3,那么的最大值为()A.B.C.D.答案D例4.已知定点P(6,4)与直线l1:y=4x,过点P的直线l与l1交于第一象限的Q点,与x轴正半轴交于点M.求使△OQM面积最小的直线l的方程.解:Q点在l1:y=4x上,可设Q(x0,
6、4x0),则PQ的方程为:令y=0,得:x=(x0>1),∴M(,0)∴S△OQM=··4x0=10·=10·[(x0-1)++2]≥40当且仅当x0-1=即x0=2取等号,∴Q(2,8)PQ的方程为:,∴x+y-10=0变式训练4.直线l过点M(2,1),且分别交x轴y轴的正半轴于点A、B,O为坐标原点.(1)当△AOB的面积最小时,求直线l的方程;(2)当取最小值时,求直线l的方程.解:设l:y-1=k(x-2)(k<0)则A(2-,0),B(0,1-2k)①由S=(1-2k)(2-)=(4-4k-)≥=4当且仅当-4k=-,即k=-时等号成立∴△AOB的面积最小值为4
7、此时l的方程是x+2y-4=0②∵
8、MA
9、·
10、MB
11、===2≥4当且仅当-k=-即k=-1时等号成立此时l的方程为x+y-3=0(本题也可以先设截距式方程求解)小结归纳1.直线方程是表述直线上任意一点M的坐标x与y之间的关系式,由斜率公式可导出直线方程的五种形式.这五种形式各有特点又相互联系,解题时具体选取哪一种形式,要根据直线的特点而定.2.待定系数法是解析几何中常用的思想方法之一,用此方法求直线方程,要注意所设方程的适用范围.如:点斜式、斜截式中首先要存在斜率,截距式中横纵截距存在且不为0,两点式的横纵坐标不能
此文档下载收益归作者所有