资源描述:
《结构力学-位移法原理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、4.位移法的基本原理(FundamentalsofDisplacementMethod)已有的知识:(2)静定结构的内力分析和位移计算;(1)结构组成分析;(3)超静定结构的内力分析和位移计算力法;已解得如下单跨梁结果。ABAB位移法中的基本单跨梁表示要熟记!!!超静定单跨梁的力法结果(1)形形载形=形常数载=载常数超静定单跨梁的力法结果(2)载载载超静定单跨梁的力法结果(3)载载载1超静定单跨梁的力法结果(4)形载形载超静定单跨梁的力法结果(5)载载载超静定单跨梁的力法结果(6)载载载载超静定单跨梁的力法结果(7)载载
2、载形超静定单跨梁的力法结果(8)载载载载超静定单跨梁的力法结果(9)载载载载2超静定单跨梁的力法结果(10)载载载回顾力法的思路:(1)解除多余约束代以基本未知力,确定基本结构、基本体系;(2)分析基本结构在未知力和“荷载”共同作用下的变形,消除与原结构的差别,建立力法典型方程;(3)求解未知力,将超静定结构化为静定结构。核心是化未知为已知在线性小变形条件下,由叠加原理可得单跨超静定梁在荷载、温改和支座移动共同作用下FPxy其中:称杆件的线刚度。为由荷载和温度变化引起的杆端弯矩,称为固端弯矩。转角位移方程(刚度方程)Sl
3、ope-Deflection(Stiffness)Equation同理,另两类杆的转角位移方程为A端固定B端铰支A端固定B端定向位移法第一种基本思路图示各杆长度为l,EI等于常数,分布集度q,集中力FP,力偶M.如何求解?qFPFPM力法未知数个数为3,但独立位移未知数只有一(A点转角,设为).ΔFPFP位移法第一种基本思路在此基础上,由图示结点平衡得利用转角位移方程可得:第一种基本思路位移法思路(平衡方程法)以某些结点的位移为基本未知量将结构拆成若干具有已知力-位移(转角-位移)关系的单跨梁集合分析各单跨梁在外因和结
4、点位移共同作用下的受力将单跨梁拼装成整体用平衡条件消除整体和原结构的差别,建立和位移个数相等的方程求出基本未知量后,由单跨梁力-位移关系可得原结构受力第二种基本思路图示各杆长度为l,EI等于常数,分布集度q,集中力FP,力偶M.如何求解?qFPFPMΔFPFP以A点转角做基本未知量,设为.在A施加限制转动的约束,以如图所示体系为基本体系(基本结构的定义和力法相仿).第二种基本思路利用“载常数”可作图示荷载弯矩图利用“形常数”可作图示单位弯矩图第二种基本思路位移法思路(典型方程法)以位移为基本未知量,先“固定”(不产生任
5、何位移)考虑外因作用,由“载常数”得各杆受力,作弯矩图。令结点产生单位位移(无其他外因),由“形常数”得各杆受力,作弯矩图。两者联合原结构无约束,应无附加约束反力(平衡).列方程可求位移。基本思路典型方程法:仿力法,按确定基本未知量、基本结构,研究基本体系在位移和外因下的“反应”,通过消除基本体系和原结构差别来建立位移法基本方程(平衡)的上述方法。平衡方程法:利用等直杆在外因和杆端位移下由迭加所建立杆端位移与杆端力关系(转角位移)方程由结点、隔离体的杆端力平衡建立求解位移未知量的方法。基本思路两种解法对比:典型方程法和力
6、法一样,直接对结构按统一格式处理。最终结果由迭加得到。平衡方程法对每杆列转角位移方程,视具体问题建平衡方程。位移法方程概念清楚,杆端力在求得位移后代转角位移方程直接可得。位移法方程:两法最终方程都是平衡方程。整理后形式均为:典型方程法基本概念位移未知量(一些特殊情况以后结合例题讨论)结点位移包括角位移和线位移独立角位移na=刚结点数;独立线位移nl=?不考虑轴向变形时:nl=‘刚结点’变成铰,为使铰结体系几何不变所需加的支杆数。考虑轴向变形时:nl=结点数2–约束数总未知量n=na+nl。手算时电算时位移未知数确定举例
7、位移未知数确定举例位移未知数确定举例位移未知数确定举例位移未知数确定举例位移未知数确定练习位移未知数确定练习位移未知数确定练习位移未知数确定练习典型方程法基本概念基本结构:加约束“无位移”,能拆成已知杆端力-杆端位移关系“单跨梁”的超静定结构。基本体系:受外因和未知位移的基本结构。①②③④⑤典型方程法基本概念基本方程:外因和未知位移共同作用时,附加约束没有反力——实质为平衡方程。外因附加反力为零未知位移典型方程法步骤确定独立位移未知量数目(隐含建立基本体系,支杆只限制线位移,限制转动的约束不能阻止线位移)作基本未知量分别
8、等于单位时的单位弯矩图作外因(主要是荷载)下的弯矩图由上述弯矩图取结点、隔离体求反力系数典型方程法步骤建立位移法典型方程并且求解:按迭加法作最终弯矩图取任意部分用平衡条件进行校核例一:用位移法计算图示刚架,并作弯矩图.E=常数.单位弯矩图和荷载弯矩图示意图如下:图4i4i8i2i单位弯矩图为图8i8i4i4i4i2i