资源描述:
《最短路径问题 教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、13.4 课题学习 最短路径问题【教学目标】教学知识点能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.能力训练要求在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感与价值观要求通过有趣的问题提高学习数学的兴趣.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有所用的数学.【教学重难点】重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.难点:如何利用轴对称将最短路径问题转化为线段和最小问题.突破难点的方法:利用轴对称性质,作任意已知点的对称点,连接对
2、称点和已知点,得到一条线段,利用两点之间线段最短来解决.【教学过程】一、创设情景引入课题师:前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.(板书)课题学生思考教师展示问题,并观察图片,获得感性认识.二、自主探究合作交流建构新知1提出问题:(1)观察思考,抽象为数学问题(2)你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?师生活动:学生尝试回答,并互相
3、补充,最后达成共识:(1)从A地出发,到河边l饮马,然后到B地;(2)在河边饮马的地点有无穷多处,把这些地点与A,B连接起来的两条线段的长度之和,就是从A地到饮马地点,再回到B地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设P为直线上的一个动点,上面的问题就转化为:当点P在l的什么位置时,AP与PB的和最小强调:将最短路径问题抽象为“线段和最小问题”2分析问题3解决问题思考 你能用所学的知识证明AP+BP最短吗?方法提炼:将最短路径问题抽象为“线段和最小问题”.4拓展问题三、拓展训练如图,小河边有两个村庄A,B,要在
4、河边建一自来水厂向A村与B村供水.(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?(3))若要使厂部到A,B两村的水管距离差最大,应建在什么地方?(4))若要使厂部到A,B两村的水管距离差最小,应建在什么地方?四、作业布置课本93页第15题.五、反思小结最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手.对于直线异侧的两点,怎样在直线上找到一点,使这一点到这两点的距离之和最小,学生很
5、容易想到连接这两点,所连线段与直线的交点就是所求的点.但对于直线同侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,一些学生会感到茫然,找不到解决问题的思路.在证明“最短”时,需要在直线上任取一点(与所求作的点不重合),证明所连线段和大于所求作的线段和,学生想不到,不会用.教学时,教师可从“直线异侧的两点”过渡到“直线同侧的两点”,为学生搭建“脚手架”.在证明“最短”时,教师可告诉学生,证明“最大”“最小”这类问题,常常要另选一个量,通过与求证的那个“最大”“最小”的量进行比较来证明.由于另取的点具有任意性,所以结论对于直线上的每一点(
6、C点除外)都成立,这也是教学难点:如何利用轴对称将最短路径问题转化为线段和最小问题.