最短路径问题教学设计

最短路径问题教学设计

ID:35629224

大小:118.00 KB

页数:9页

时间:2019-04-04

最短路径问题教学设计_第1页
最短路径问题教学设计_第2页
最短路径问题教学设计_第3页
最短路径问题教学设计_第4页
最短路径问题教学设计_第5页
资源描述:

《最短路径问题教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.《最短路径问题》教学设计一、课标分析2011版《数学课程标准》指出:“模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。”随着现代信息技术的飞速发展,极大地推进了应用数学与数学应用的发展,使得数学几乎渗透到每一个科学领域及人们生活的方方面面。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,数学建模难度大、涉及面广,数学建模的教学本身是一个不断探索、不断创

2、新、不断完善和提高的过程。新课标强调从生产、生活等实际问题出发,引导学生运用数学知识,去解决实际问题,培养应用意识与能力。因此,数学建模是初中数学的重要任务之一,它是培养学生应用数学的意识和能力的有效途径和强有力的教学手段。但从教学的反馈信息看,初中学生的数学建模能力普遍很弱,这与课堂教学中忽视对学生数学建模能力的培养不无关系。要想提高学生的建模能力,我们就要在课堂教学中引导学生从生活经验和已有的知识出发,从社会热点问题出发,让学生直接接触数学建模,培养学生抽象能力以及运用数学知识能力。现实生活中问题是很复杂的,有些问题表面看来毫无相同之处,但抽象为数学模

3、型,本质都是相同的,这些问题都可以用类似的方法解决。本节课的教学中注重模型归类,多题一模,训练学生归纳能力,培养学生数学建模能力。二、教材分析本节课是在学习了基本事实:“两点之间线段最短”和轴对称的性质、勾股定理的基础上,引导学生探究如何综合运用知识解决最短路径问题。它既是轴对称、勾股定理知识运用的延续,又能培养学生自主探究,学会思考,在知识与能力转化上起到桥梁作用.对于本节课的内容,青岛版教材没有独立编排,只是随着学生数学学习的不断推进,逐步添加了部分题目来逐步渗透,这也使大部分学生忽视了这一知识点。设计整合了一些以三角形、四边形、圆、函数、立体图形为背

4、景的最短路径问题,让学生直面数学模型,体会数学的本质,有利于学生系统的学习知识。学习目标:1.能够利用基本事实“两点之间线段最短”和“轴对称的性质”,从复杂的图形中抽象出“最短路径”问题的基本数学模型,体会轴对称的“桥梁”作用。2.能将立体图形中的“最短路径问题”转化为平面图形来解决,感悟转化思想.3、通过训练,提高综合运用知识的能力。...教学重点:通过利用轴对称将最短路径问题转化为“连点之间,线段最短”问题,学会从知识内容中提炼出数学模型和数学数学方法。教学难点:从复杂的图形中抽象出“最短路径”问题的基本数学模型。突破难点的方法:对应模型,找出本质问题

5、。突出重点的方法:通过设置问题、引导思考、探究讨论、例题讲解方式突出重点。突破难点的方法:勾股定理、线段公理和轴对称性质的灵活运用和提升是个难点,加上指导学生学会思考还在培养之中,仅靠学生是不能完成的,所以在教学中要充分运用多媒体教学手段,通过启发引导,小组讨论,例题讲解,变式提升、归纳总结来帮助学生理解知识的应用和方法的提升,层层深入,逐一突破难点。三、学情分析对于九年级的学生来说,已学过一些关于空间与图形的简单推理知识,具备了一定的合情推理能力,能应用勾股定理、线段公理、轴对称的性质等知识解决简单的问题,但演绎推理的意识和能力还有待加强,思维缺乏灵活性

6、.最短路径问题,学生在八年级已经有所接触。对于直线异侧的两点,怎样在直线上找到一点,使这一点到这两点的距离之和最小,学生很容易想到连接这两点,所连线段与直线的交点就是所求的点.但对于直线同侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,受已有经验和知识基础的影响,部分学生在八年级学习时很茫然,找不到解决问题的思路。进入中考复习阶段,随着一些以三角形、四边形、圆、函数、立体图形为背景的最短路径问题的出现,更是让学生感到陌生,无从下手。从平时教学反映出学生不重视学习方法,不注意归纳总结,不会思考,更不善于思考,学生学得累。所以想通过本节课引导学

7、生学会学习,学会思考,从而使其感受到学习的快乐,提高学习的兴趣,避免死做题,以达到提高学习能力的目的.四、教学设计(一)创设情景相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能用所学的知识解决这个问题吗?...BAl【学生活动】学生思考教师展示问题,并观察图片,获得感性认识.【设计意图】从生

8、活中问题出发,唤起学生的学习兴趣及探索欲望.(二)知识回顾1.如图

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。