欢迎来到天天文库
浏览记录
ID:42852991
大小:17.01 KB
页数:4页
时间:2019-09-23
《函数的图像 (3)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第19章《19.1.2函数的图象》教学设计鼎湖区莲花初级中学罗文斌目标知识与技能:1.学会用列表、描点、连线画函数图象.2.学会观察、分析函数图象信息.过程与方法:1.提高识图能力、分析函数图象信息能力.2.体会数形结合思想,并利用它解决问题,提高解决问题能力.情感、态度与价值观:1.体会数学方法的多样性,提高学习兴趣.2.认识数学在解决问题中的重要作用从而加深对数学的认识教学重点1.函数图象的画法.2.观察分析图象信息教学难点分析概括图象中的信息.教学方法自主─探究、归纳─总结教学准备ppt教学过程设计(含各环节中的教
2、师活动和学生活动以及设计意图)教学过程Ⅰ.提出问题,创设情境我们在前面学习了函数意义,并掌握了函数关系式的确立.但有些函数问题很难用函数关系式表示出来,然而可以通过图来直观反映.例如用心电图表示心脏生物电流与时间的关系.即使对于能列式表示的函数关系,如果也能画图表示则会使函数关系更清晰.我们这节课就来解决如何画函数图象的问题及解读函数图象信息.Ⅱ.导入新课我们先来看这样一个问题:正方形的边长x与面积S的函数关系是什么?其中自变量x的取值范围是什么?计算并填写下表:x0.511.522.533.5S[生]函数关系式为S=x
3、2,因为x代表正方形的边长,所以自变量x>0,将每个x的值代入函数式即可求出对应的S值.[师]好!如果我们在直角坐标系中,将你所填表格中的自变量x及对应的函数值S当作一个点的横坐标与纵坐标,即可在坐标系中得到一些点.大家思考一下,表示x与S的对应关系的点有多少个?如果全在坐标中指出的话是什么样子?可以讨论一下,然后发表你们的看法,建议大家不妨动手画画看.[生]这样的点有无数多个,如果全描出来太麻烦,也不可能.我们只能描出其中一部分,然后想象出其他点的位置,用光滑曲线连接起来.[师]很好!这样我们就得到了一幅表示S与x关系
4、的图.图中每个点都代表x的值与S的值的一种对应关系.如点(2,4)表示x=2时S=4.一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象(graph).上图中的曲线即为函数S=x2(x>0)的图象.函数图象可以数形结合地研究函数,给我们带来便利.[活动一]活动内容设计:讲解例题例:在下列式子中,对于x的每个确定的值,y有唯一的对应值,即y是x的函数.请画出这些函数的图象.1.y=x+0.52.y=(x>0)解:1.y=x+0.5从上式可看出,x
5、取任意实数式子都有意义,所以x的取值范围是全体实数.从x的取值范围中选取一些数值,算出y的对应值.列表如下:x…-3-2-10123…y…-2.5-1.5-0.50.51.52.53.5…根据表中数值描点(x,y),并用光滑曲线连结这些点.从函数图象可以看出,直线从左向右上升,即当x由小变大时,y=x+0.5随之增大.2.y=(x>0)自变量的取值为x>0的实数,即正实数.按条件选取自变量值,并计算y值列表:x…0.511.522.533.54…y…126432.421.71.5…据表中数值描点(x,y)并用光滑曲线连接
6、这些点,就得到图象.从函数图象可以看出,曲线从左向右下降,即当x由小变大时,y=随之减小.[师]我们来总结归纳一下描点法画函数图象的一般步骤,好吗?[生]由以上例题可以知道:第一步:列表.在自变量取值范围内选定一些值.通过函数关系式求出对应函数值列成表格.第二步:描点.在直角坐标系中,以自变量的值为横坐标,相应函数值为纵坐标,描出表中对应各点.第三步:连线.按照坐标由小到大的顺序把所有点用平滑曲线连结起来.Ⅲ.随堂练习1.A(-2.5,-4),B(1,3)不在函数y=2x-1的图象上,C(2.5,4)在函数y=2x-1的
7、图象上.2.(1)这一天内,12时上海北京气温相同.(2)略3.(1)x…-2-1012…y…41014…(2)从图象中观察,当x>0时,y随x的增大而增大.当x<0时,y随x的增大而减小.Ⅳ.课时小结本节通过两个活动,学会了分析图象信息,解答有关问题.通过例题学会了用描点法画出函数图象,这样我们又一次利用了数形结合的思想.本课作业金榜行动第一课时板书设计课题:《19.1.2函数与图象》一、画图步骤二、练习
此文档下载收益归作者所有