资源描述:
《《勾股定理》提高练习》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、十七章《勾股定理》提高练习1..如图,正方形网格中,每小格正方形边长为1,则网格上的三角形ABC中,边长为无理数的边数有()A.0条B.1条C.2条D.3条2.如图,已知点A(・1,0)和点B(1,2),在坐标轴上确定点P,使得AABP为直角三角形,则满足这样条件的点P共有()A.2个B.4个C.6个D.7个3.如图,将三边长分别为3,4,5的AABC沿最长边翻转180。成△ABC
2、,则C©的长等于()A._12B.AC._5D.2451265A.42B.32C.42或32D.37或335.如图,所示图形屮,所有的三角形都是直角三角形,所有的四边形都是正方形,其屮最大的正方形边长为7cm.则
3、正方形A、B、C、D的面积和是cm2.6.观察下列一组勾股数:①3,4,5;②5,12,13;③7,24,25;④9,40,41;⑤15,m,n.根据你发现的规律可得m+n二.7.等边三角形边长为a,则该三角形的面积为.三•解答题8.如图,A城气象台测得台风中心在A城正西方向600km的B处,以每小时200km的速度向北偏东60。的方向移动,距台风中心500km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风影响有多长时间?北5.如图,已知在AABC中,CD丄AB于D,AC=20,BC=15,DB=9.(1)求DC的长
4、.(2)求AB的长.6.如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知CE二3cm,AB=8cm,求图中阴影部分的面积.7.如图所示,在AABC中,AC=8,BC=6,在厶ABE中,DE为AB上的高,DE=12,Saabe=60,求ZABC的面积.5.如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.折宛时顶点D落在BC边上的点F处(折痕为AE),求此时EC的长度?6.如图,小明在广场上先向东走10米,又向南走40米,再向酋走20米,又向南走40米,再向东走70米.求小明到达的终止点与原出发点的距离.出发点10■「X20小、、[
5、―1U40NX%70终止点14•如图,已知AB〃CD,AB二CD,AD〃BC,AD二BC,DE是ZADC的角平分线,交BC于点E.(1)求证:CD=CE;(2)若AE丄DE,DC二5,DE=8,求四边形ABCD的而积.C15,RtAABC中,ZA=90°,BCM,有一个内角为60。,点P是直线AB±不同于A,B的一点,且ZACP=30°,求PB的长.16.如图,长方形ABCD在直角坐标系中,边BC在x轴上,B点坐标为(m,0)且m>0.AB=a,BC=b,且满足J6—a—Ja—6+8(1)求a,b的值及用m表示出点D的坐标;(2)连接OA,AC,若厶。*。为等腰三角形,求m的值;(3)AO
6、AC能为直角三角形吗?若能,求出ni的值;若不能,说明理由.