专题讲座 推理与证明

专题讲座 推理与证明

ID:41499555

大小:690.00 KB

页数:13页

时间:2019-08-26

专题讲座 推理与证明_第1页
专题讲座 推理与证明_第2页
专题讲座 推理与证明_第3页
专题讲座 推理与证明_第4页
专题讲座 推理与证明_第5页
资源描述:

《专题讲座 推理与证明》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、推理与证明一:知识点:1、归纳推理:把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由特殊到一般的推理。归纳推理的一般步骤:通过观察个别情况发现某些相同的性质;从已知的相同性质中推出一个明确表述的一般命题(猜想);证明(视题目要求,可有可无).2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.类比推理的一般步骤:找出两类对象之间可以确切表

2、述的相似特征;用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;检验猜想。3、合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.归纳推理和类比推理统称为合情推理,通俗地说,合情推理是指“合乎情理”的推理.4、演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.演绎推理的一般模式———“三段论”,包括  ⑴大前提-----已知的一般原理;⑵小前提-----所研究的特

3、殊情况;⑶结论-----据一般原理,对特殊情况做出的判断.5、直接证明与间接证明⑴综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.要点:顺推证法;由因导果.⑵分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.要点:逆推证法;执果索因.⑶反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.的证明方法.它是

4、一种间接的证明方法.反证法法证明一个命题的一般步骤:(1)(反设)假设命题的结论不成立;(2)(推理)根据假设进行推理,直到导出矛盾为止;(3)(归谬)断言假设不成立;(4)(结论)肯定原命题的结论成立.6、数学归纳法数学归纳法是证明关于正整数的命题的一种方法.用数学归纳法证明命题的步骤;(1)(归纳奠基)证明当取第一个值时命题成立;(2)(归纳递推)假设时命题成立,推证当时命题也成立.只要完成了这两个步骤,就可以断定命题对从开始的所有正整数都成立.二:典型例题例1.已知:;通过观察上述两等式的规律,

5、请你写出一般性的命题:__________________并证明.变式训练1:设,,n∈N,则例2.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:。设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O—LMN,如果用表示三个侧面面积,表示截面面积,那么你类比得到的结论是.变式训练2:在△ABC中,若∠C=90°,AC=b,BC=a,则△ABC的外接圆的半径,把上面的结论推广到空间,写出相类似的结论。例3.请你把

6、不等式“若是正数,则有”推广到一般情形,并证明.。变式训练3:观察式子:,…,可归纳出式子为()A、B、C、D、例4.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线平面,直线∥平面,则直线∥直线”的结论显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误变式训练4:“AC,BD是菱形ABCD的对角线,AC,BD互相垂直且平分。”补充以上推理的大前提是。例5为实数,求证中至少有一个大于0。变式训练5:用反证法证明命题“可以被5整除,那

7、么中至少有一个能被5整除。”那么假设的内容是例6.△ABC的三个内角A、B、C成等差数列,求证:。变式训练6:用分析法证明:若a>0,则。例7.已知数列,,,.记..求证:当时,(1);(2);三:巩固练习1.考察下列一组不等式:.将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式可以是.2.已知数列满足,(),则的值为,的值为.3.已知,猜想的表达式为()A.;B.;C.;D..4.某纺织厂的一个车间有技术工人名(),编号分别为1、2、3、……、,有

8、台()织布机,编号分别为1、2、3、……、,定义记号:若第名工人操作了第号织布机,规定,否则,则等式的实际意义是()A、第4名工人操作了3台织布机;B、第4名工人操作了台织布机;C、第3名工人操作了4台织布机;D、第3名工人操作了台织布机.5.已知,计算得,,,,,由此推测:当时,有……6.观察下图中各正方形图案,每条边上有个圆圈,每个图案中圆圈的总数是,按此规律推出:当时,与的关系式7.观察下式:1=12,2+3+4=32,3+4+5+6+7=52,4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。