2019春九年级数学下册第一章直角三角形的边角关系1.1锐角三角函数第2课时正弦与余弦教案1新版北师大版

2019春九年级数学下册第一章直角三角形的边角关系1.1锐角三角函数第2课时正弦与余弦教案1新版北师大版

ID:41215051

大小:52.50 KB

页数:3页

时间:2019-08-19

2019春九年级数学下册第一章直角三角形的边角关系1.1锐角三角函数第2课时正弦与余弦教案1新版北师大版_第1页
2019春九年级数学下册第一章直角三角形的边角关系1.1锐角三角函数第2课时正弦与余弦教案1新版北师大版_第2页
2019春九年级数学下册第一章直角三角形的边角关系1.1锐角三角函数第2课时正弦与余弦教案1新版北师大版_第3页
资源描述:

《2019春九年级数学下册第一章直角三角形的边角关系1.1锐角三角函数第2课时正弦与余弦教案1新版北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.1锐角三角函数第2课时正弦与余弦1.理解正弦与余弦的概念;(重点)2.能用正弦、余弦的知识,根据三角形中已知的边和角求出未知的边和角.(难点)                   一、情境导入如图,小明沿着某斜坡向上行走了13m,他的相对位置升高了5m.如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了am呢?在上述情形中,小明的位置沿水平方向又分别移动了多少?根据相似三角形的性质可知,当直角三角形的一个锐角的大小确定时,它的对边与斜边的比值、邻边与斜边的比值也就确定了.二、合作探究探究点:正弦和余

2、弦【类型一】直接利用定义求正弦和余弦值在Rt△ABC中,∠C=90°,AB=13,BC=5,求sinA,cosA.解析:利用勾股定理求出AC,然后根据正弦和余弦的定义计算即可.解:由勾股定理得AC===12,sinA==,cosA==.方法总结:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,熟记三角函数的定义是解决问题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】已知一个三角函数值求另一个三角函数值如图,在△ABC中,∠C=90°,点D在BC上,AD=BC=5,

3、cos∠ADC=,求sinB的值.解析:先由AD=BC=5,cos∠ADC=及勾股定理求出AC及AB的长,再由锐角三角函数的定义解答.解:∵AD=BC=5,cos∠ADC=,∴CD=3.在Rt△ACD中,∵AD=5,CD=3,∴AC===4.在Rt△ACB中,∵AC=4,BC=5,∴AB===,∴sinB===.方法总结:在不同的直角三角形中,要根据三角函数的定义,分清它们的边角关系,结合勾股定理是解答此类问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第8题【类型三】比较三角函数的大小sin70°,co

4、s70°,tan70°的大小关系是(  )A.tan70°<cos70°<sin70°B.cos70°<tan70°<sin70°C.sin70°<cos70°<tan70°D.cos70°<sin70°<tan70°解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°<∠A<90°间变化时,0cosA>0.当角度在45°<∠A<

5、90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=,si

6、nβ=.∵AD<AB,∴>,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.【类型五】三角函数的综合应用如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若sinC=,BC=36,求AD的长.解析:(1)根据高的定义得到∠ADB=∠ADC=90°,再分别利用正切和余弦的定义得到tanB=,cos∠DAC=,再利用tanB=cos∠DAC得到=,所以AC=BD;(2)在Rt△ACD中,根据正弦的定义得sinC==,可设

7、AD=12k,AC=13k,再根据勾股定理计算出CD=5k,由于BD=AC=13k,于是利用BC=BD+CD得到13k+5k=36,解得k=2,所以AD=24.(1)证明:∵AD是BC上的高,∴∠ADB=∠ADC=90°.在Rt△ABD中,tanB=,在Rt△ACD中,cos∠DAC=.∵tanB=cos∠DAC,∴=,∴AC=BD;(2)解:在Rt△ACD中,sinC==.设AD=12k,AC=13k,∴CD==5k.∵BD=AC=13k,∴BC=BD+CD=13k+5k=36,解得k=2,∴AD=12×2=24.

8、变式训练:见《学练优》本课时练习“课后巩固提升”第10题三、板书设计正弦与余弦1.正弦的定义2.余弦的定义3.利用正、余弦解决问题本节课的教学设计以直角三角形为主线,力求体现生活化课堂的理念,让学生在经历“问题情境——形成概念——应用拓展——反思提高”的基本过程中,体验知识间的内在联系,让学生感受探究的乐趣,使学生在学中思,在思中学.在教学过程

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。