八年级数学下册 第六章 平行四边形 6.2 平行四边形的判定 6.2.1 平行四边形的判定导学案 (新版)北师大版

八年级数学下册 第六章 平行四边形 6.2 平行四边形的判定 6.2.1 平行四边形的判定导学案 (新版)北师大版

ID:41179255

大小:62.50 KB

页数:7页

时间:2019-08-18

八年级数学下册 第六章 平行四边形 6.2 平行四边形的判定 6.2.1 平行四边形的判定导学案 (新版)北师大版_第1页
八年级数学下册 第六章 平行四边形 6.2 平行四边形的判定 6.2.1 平行四边形的判定导学案 (新版)北师大版_第2页
八年级数学下册 第六章 平行四边形 6.2 平行四边形的判定 6.2.1 平行四边形的判定导学案 (新版)北师大版_第3页
八年级数学下册 第六章 平行四边形 6.2 平行四边形的判定 6.2.1 平行四边形的判定导学案 (新版)北师大版_第4页
八年级数学下册 第六章 平行四边形 6.2 平行四边形的判定 6.2.1 平行四边形的判定导学案 (新版)北师大版_第5页
资源描述:

《八年级数学下册 第六章 平行四边形 6.2 平行四边形的判定 6.2.1 平行四边形的判定导学案 (新版)北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、6.2.1平行四边形的判定导学案学习目标1.探索并证明两组对边分别相等和一组对边平行且相等的四边形是平行四边形;2.利用两组对边分别相等和一组对边平行且相等的四边形是平行四边形定理解决有关问题.一.自学释疑1.两对长度分别相等的木条,在同一平面内,将相等的木条成对边能摆成一个平行四边形,如果这四根木条不在同一平面内,将相等的木条成对边,能摆成一个平行四边形吗?2.一组对边平行且相等的四边形是平行四边形;如果一组对边平行,另一组对边相等的四边形一定是平行四边形吗?二.合作探究探究点一问题1:工具:两对长度分别相等的笔.动手:在同一平面内,将相等的笔成对边摆成一个平行四边形.思考

2、:你能说明你所摆出的四边形是平行四边形吗?已知:如图,在四边形ABCD中,AB=CD,BC=AD求证:四边形ABCD是平行四边形.结论:的四边形是平行四边形.问题2:工具:两根同样长的木条AB、CD.动手:将两根同样长的木条AB、CD平行放置,再用木条AD、BC加固.思考:四边形ABCD是平行四边形吗?已知:如图,在四边形ABCD中,AB∥CD,AB=CD求证:四边形ABCD是平行四边形.结论:的四边形是平行四边形.探究点二问题1:如图,已知AC是□ABCD的一条对角线,BM⊥AC于M,DN⊥AC于N,求证:四边形BMDN是平行四边形.问题2:如图,在平行四边形ABCD中,E

3、、F分别是AD和BC的中点.求证:四边形BFDE是平行四边形.强化训练1.已知四边形ABCD的四条边长依次为a,b,c,d,且满足(a-c)²+(b-d)²=0,求证:AB∥CD.2.如图,等边三角形ABC的边长为a,点P为△ABC内一点,且PD∥AB,PE∥BC,PF∥AC那么,PD+PE+PF的值为一个定值,这个定值是多少?请你说明理由.随堂检测1.如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB,AD,CD,则四边形ABCD一定是()A.任意四边形B.平行四边形C.长方形D.正方形2.如图所示,四个全等

4、的三角形拼成一个大的三角形,找出图中所有的平行四边形的个数()A.1个B.2个C.3个D.4个3.若点A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC=AD;④BC∥AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()A.3种B.4种C.5种D.6种4.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.我的收获:.参考答案探究点一问题1:证明:连接BD,在∆ABD和∆CDB中∵AB=CD,BC=AD,BD=DB∴∆ABD≌∆CDB∴∠1=∠2,∠3=∠4∴四边形AB

5、CD是平行四边形结论:两组对边分别相等.问题2:证明:连接AC,∵AB∥CD∴∠BAC=∠DCA又∵AB=CD,AC=CA∴∆ABC≌∆CDA∴BC=DA∴四边形ABCD是平行四边形结论:一组对边平行且相等.研究点二问题1:证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB∴∠DAN=∠BCM又∵BM⊥AC,DN⊥AC,∴DN∥BM,∠DNA=∠BMC=90°∴△AND≌△CMB,∴DN=BM.∴四边形BMDN是平行四边形.问题2:证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB又∵点E,F分别是AD,BC的中点∴ED=½AD,FB=½CB∴ED=FB,

6、ED∥FB∴四边形BFDE是平行四边形.强化训练1.证明:∵(a-c)²+(b-d)²=0,∴a-c=0,b-d=0.∴a=c,b=d.∴四边形ABCD是平行四边形.∴AB∥CD.2.解:PD+PE+PF=a.理由如下:如图,延长EP交AB于G,延长FP交BC于H,∵PE∥BC,PF∥AC,△ABC是等边三角形,∴∠PGF=∠B=60°,∠PFG=∠A=60°,∴△PFG是等边三角形,同理可得△PDH是等边三角形,∴PF=PG,PD=DH.又∵PD∥AB,PE∥BC,∴四边形BDPG是平行四边形,∴PG=BD,∴PD+PE+PF=DH+CH+BD=BC=a.随堂检测1.B2.

7、C3.B4.证明:∵AB∥CD,∴∠BAE=∠DCF.∵BE∥DF,∴∠BEF=∠DFE.∴∠AEB=∠CFD.在△AEB和△CFD中,∠AEB=∠CFD,AE=CF,∠BAE=∠DCF,∴△AEB≌△CFD(ASA).∴AB=CD.又∵AB∥CD,∴四边形ABCD是平行四边形.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。