The Journal of Machine Learning Research Vol 6

The Journal of Machine Learning Research Vol 6

ID:40964458

大小:4.44 MB

页数:183页

时间:2019-08-12

The Journal of Machine Learning Research Vol 6_第1页
The Journal of Machine Learning Research Vol 6_第2页
The Journal of Machine Learning Research Vol 6_第3页
The Journal of Machine Learning Research Vol 6_第4页
The Journal of Machine Learning Research Vol 6_第5页
资源描述:

《The Journal of Machine Learning Research Vol 6》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、JournalofMachineLearningResearch6(2005)1-35Submitted7/03;Revised2/04;Published1/05AsymptoticModelSelectionforNaiveBayesianNetworksDmitryRusakovRUSAKOV@CS.TECHNION.AC.ILDanGeigerDANG@CS.TECHNION.AC.ILComputerScienceDepartmentTechnion-IsraelInstituteofTechn

2、ologyHaifa,32000,IsraelEditor:DavidMadiganAbstractWedevelopaclosedformasymptoticformulatocomputethemarginallikelihoodofdatagivenanaiveBayesiannetworkmodelwithtwohiddenstatesandbinaryfeatures.ThisformuladeviatesfromthestandardBICscore.Ourworkprovidesaconcr

3、eteexamplethattheBICscoreisgenerallyincorrectforstatisticalmodelsthatbelongtostratifiedexponentialfamilies.Thisclaimstandsincontrasttolinearandcurvedexponentialfamilies,wheretheBICscorehasbeenproventoprovideacorrectasymptoticapproximationforthemarginallike

4、lihood.Keywords:Bayesiannetworks,asymptoticmodelselection,Bayesianinformationcriterion(BIC)1.IntroductionStatisticiansareoftenfacedwiththeproblemofchoosingtheappropriatemodelthatbestfitsagivensetofobservations.Oneexampleofsuchproblemisthechoiceofstructurei

5、nlearningofBayesiannetworks(Heckermanetal.,1995;CooperandHerskovits,1992).Insuchcasesthemaximumlikelihoodprinciplewouldtendtoselectthemodelofhighestpossibledimension,contrarytotheintuitivenotionofchoosingtherightmodel.PenalizedlikelihoodapproachessuchasAI

6、Chavebeenproposedtoremedythisdeficiency(Akaike,1974).WefocusontheBayesianapproachtomodelselectionbywhichamodelMischosenaccordingtothemaximumposterioriprobabilitygiventheobserveddataD:ZP(M

7、D)µP(M,D)=P(M)P(D

8、M)=P(M)P(D

9、M,w)P(w

10、M)dw,Wwherewdenotesthemodelpara

11、metersandWdenotesthedomainofthemodelparameters.Inparticular,wefocusonmodelselectionusinglargesampleapproximationforP(M

12、D),calledBIC-BayesianInformationCriterion.Thecriticalcomputationalpartinusingthiscriterionisevaluatingthemarginallikelihoodin-RtegralP(D

13、

14、M)=WP(D

15、M,w)P(w

16、M)dw.GivenanexponentialmodelMwewriteP(D

17、M)asafunctionoftheaveragedsufficientstatisticsYDofthedataD,andthenumberNofdatapointsinD:ZI[N,Y,M]=eL(YD,N

18、w,M)µ(w

19、M)dw,(1)DWwhereµ(w

20、M)isthepriorparameterdensi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。