欢迎来到天天文库
浏览记录
ID:40753262
大小:24.50 KB
页数:7页
时间:2019-08-07
《Monte Carlo统计模拟法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、MonteCarlomethodMonteCarlo,又称统计模拟法、随机抽样技术,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的MonteCarlo—来命名这种方法,为它蒙上了一层神秘色彩。 MonteCarlo方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”。19世纪人们用投针试验的方法来决定圆周率π。本世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样
2、的试验成为可能。 考虑平面上的一个边长为1的正方形及其内部的一个形状不规则的“图形”,如何求出这个“图形”的面积呢?MonteCarlo方法是这样一种“随机化”的方法:向该正方形“随机地”投掷N个点落于“图形”内,则该“图形”的面积近似为M/N。 可用民意测验来作一个不严格的比喻。民意测验的人不是征询每一个登记选民的意见,而是通过对选民进行小规模的抽样调查来确定可能的优胜者。其基本思想是一样的。 科技计算中的问题比这要复杂得多。比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维数(即变量的个数)可能高达数百甚至数千。对这类问题,难度随维数的增加呈指数增长,这就是所
3、谓的“维数的灾难”(CourseDimensionality),传统的数值方法难以对付(即使使用速度最快的计算机)。MonteCarlo方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数。以前那些本来是无法计算的问题现在也能够计算量。为提高方法的效率,科学家们提出了许多所谓的“方差缩减”技巧。 MonteCarlo方法有三个主要步骤: 1、构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的
4、解。即要将不具有随机性质的问题转化为随机性质的问题。 2、实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,
5、但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 3、建立各种估计量: 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计
6、。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 另一类形式与MonteCarlo方法相似,但理论基础不同的方法—“拟蒙特卡罗方法”(Quasi-MonteCarlo方法)—近年来也获得迅速发展。我国数学家华罗庚、王元提出的“华—王”方法即是其中的一例。这种方法的基本思想是“用确定性的超均匀分布序列(数学上称为LowDiscrepancySequences)代替MonteCarlo方法中的随机数序列。对某些问题该方法的实际速度一般可比MonteCarlo方法提出高数百倍,并可计算精确度。我们一直面对着不确定,不明确和变异。甚至我们无法获得信息,我们不能准确的预测
7、未来。蒙特卡洛模拟(MonteCarlosimulation)让您看到了您决策的所有可能的输出,并评估风险,允许在不确定的情况下制定更好的决策。蒙特卡洛模拟(MonteCarlosimulation)是一种计算机数学技术,允许人们在定量分析和决策制定过程中量化风险。这项技术被专家们用于各种不同的领域,比如财经,项目管理,能源,生产,工程,研究和开发,保险,石油&天然气,物流和环境。蒙特卡洛模拟(MonteCarlosimulatio
此文档下载收益归作者所有