欢迎来到天天文库
浏览记录
ID:40725313
大小:207.07 KB
页数:5页
时间:2019-08-06
《SAD-GAN -- Synthetic Autonomous Driving using Generative Adversarial Networks 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、SAD-GAN:SyntheticAutonomousDrivingusingGenerativeAdversarialNetworksArnaGhosh∗BiswarupBhattacharya∗DepartmentofElectricalEngineeringDepartmentofElectricalEngineeringIndianInstituteofTechnologyIndianInstituteofTechnologyKharagpur,WB721302.India.Kharagpur,WB721302.India.arnaghosh@iitkgp.ac.inbiswaru
2、p@iitkgp.ac.inSomnathBasuRoyChowdhury∗DepartmentofElectricalEngineeringIndianInstituteofTechnologyKharagpur,WB721302.India.brcsomnath@ee.iitkgp.ernet.inAbstractAutonomousdrivingisoneofthemostrecenttopicsofinterestwhichisaimedatreplicatinghumandrivingbehaviorkeepinginmindthesafetyissues.Weapproacht
3、heproblemoflearningsyntheticdrivingusinggenerativeneuralnetworks.Themainideaistomakeacontrollertrainernetworkusingimagespluskeypressdatatomimichumanlearning.WeusedthearchitectureofastableGANtomakepredictionsbetweendrivingscenesusingkeypresses.Wetrainourmodelononevideogame(RoadRash)andtestedtheaccu
4、racyandcompareditbyrunningthemodelonothermapsinRoadRashtodeterminetheextentoflearning.1IntroductionSelf-drivingcarsareoneofthemostpromisingprospectsforneartermartificialintelligenceresearch.Autonomousdrivingisawell-establishedproblemandtheuseoflargeamountsoflabeledandcontextuallyrichdatatosolvethep
5、roblemsofroaddetectionandpredictionofvehicleparameterslikeaccelerator,clutchandbrakepositionshavealreadybeenexplored[5].However,amajorchallengeisadatasetthatissufficientlyrichtocoverallsituationsaswellasdifferentconditions.arXiv:1611.08788v1[cs.CV]27Nov2016Asolutionproposedtoaidtheissueistheuseofsy
6、ntheticdataalongwithnaturaldatatotrainthesystem[12].Drivingisataskthatdemandscomplicatedperceptionandcontrolstaskswhichareintricatelylinkedtoeachother.Thetechnologytocorrectlysolvedrivingcanpotentiallybeextendedtootherinterestingtaskssuchasactionrecognitionfromvideosandpathplanninginrobotics.Visio
7、nbasedcontrolsandreinforcementlearninghadrecentsuccessintheliterature[6],[9],[14],[8]mostlydueto(deep,recurrent)neuralnetworksandunboundedaccesstoworldorgameinteraction.Suchinteractionsprovidethepossibilitytorevi
此文档下载收益归作者所有