MultiNet Multi-Modal Multi-Task Learning for Autonomous Driving

MultiNet Multi-Modal Multi-Task Learning for Autonomous Driving

ID:40721765

大小:3.18 MB

页数:6页

时间:2019-08-06

MultiNet Multi-Modal Multi-Task Learning for Autonomous Driving_第1页
MultiNet Multi-Modal Multi-Task Learning for Autonomous Driving_第2页
MultiNet Multi-Modal Multi-Task Learning for Autonomous Driving_第3页
MultiNet Multi-Modal Multi-Task Learning for Autonomous Driving_第4页
MultiNet Multi-Modal Multi-Task Learning for Autonomous Driving_第5页
资源描述:

《MultiNet Multi-Modal Multi-Task Learning for Autonomous Driving》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MultiNet:Multi-ModalMulti-TaskLearningforAutonomousDrivingSauhaardaChowdhuri1TusharPankaj2KarlZipser3RCAbstract—Severaldeeplearningapproacheshavebeenap-USBHubReceiverSSDpliedtotheautonomousdrivingtask,manyemployingend-to-enddeepneuralnetworks.Autonomousdrivingiscomplex,utilizingmultiplebehav

2、ioralmodalitiesrangingfromlanechangingtoturningandstopping.However,mostexistingap-proachesdonotfactorinthedifferentbehavioralmodalitiesofthedrivingtaskintothetrainingstrategy.ThispaperdescribesatechniqueforusingMulti-ModalMulti-TaskLearning,whichwedenoteasMultiNetwhichconsidersmultiplebehavi

3、oralmodalitiesasdistinctmodesofoperationforanend-to-endautonomousdeepneuralnetworkutilizingtheinsertionofmodalinformationassecondaryinputdata.Usinglabeleddatafromhoursofdrivingourfleetof1/10thscalemodelcars,weArudino#2Arudino#1NVIDIAtraineddifferentneuralnetworkstoimitatethesteeringangleLi

4、PoZEDStereoSensorandMotorandJetsonTX1BatteryCameraanddrivingspeedofhumancontrolofacar.WeshowthatdisplayControllerServoControllerineachcase,MultiNetmodelsoutperformnetworkstrainedFig.1:CarDiagramonindividualtasks,whileusingafractionofthenumberofparameters.I.INTRODUCTIONdifferenttask.Ifinstead

5、thenetworkisgiventhetaskoftranscribingtextintwomodes:oneforaudio,andtheotherMostcurrentresearchondrivingwithDNNshasfocusedforvideorecordings[8].Thisisanexampleofmulti-modalonasingledrivingmodality,e.g.lanefollowingorobstaclelearningastherearemultiplemodesofrunningthenetworkavoidance[1],[2],[

6、3],[4].Weconsidertheseapproacheseitherofwhichcanbeusedduringevaluation.asSingleTaskLearning(STL),astheyfocusontrainingtoWorkonmulti-modallearninghaspredominantlybeenperformanindividualtask.focusedinfieldsotherthanroboticsorlocomotion;e.g.Multi-tasklearning(MTL)researchhasshownthattrain-speech

7、recognitionwithaudioandvideo[8],[7].Withiningonsidetasksrelatedtothemainoperationofadeeptheseworks,itiscommonforDNNstobegiveninputthatneuralnetworkcanenhanceitslearningcapabilities[5],[6].couldcorrespondtoanyormultiplemodesofoperation.Thesesidetask

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。