塞瓦定理入门篇

塞瓦定理入门篇

ID:40715997

大小:21.50 KB

页数:3页

时间:2019-08-06

塞瓦定理入门篇_第1页
塞瓦定理入门篇_第2页
塞瓦定理入门篇_第3页
资源描述:

《塞瓦定理入门篇》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、塞瓦定理  塞瓦定理  在△ABC内任取一点O,  直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1  证法简介  (Ⅰ)本题可利用梅涅劳斯定理证明:  ∵△ADC被直线BOE所截,  ∴(CB/BD)*(DO/OA)*(AE/EC)=1①  而由△ABD被直线COF所截,∴(BC/CD)*(DO/OA)*(AF/FB)=1②  ②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1  (Ⅱ)也可以利用面积关系证明  ∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△AC

2、D-S△COD)=S△AOB/S△AOC③  同理CE/EA=S△BOC/S△AOB④AF/FB=S△AOC/S△BOC⑤  ③×④×⑤得BD/DC*CE/EA*AF/FB=1  利用塞瓦定理证明三角形三条高线必交于一点:  设三边AB、BC、AC的垂足分别为D、E、F,  根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(BF*ctgA)]=1,所以三条高CD、AE、BF交于一点。  可用塞瓦定理证明的其他定理;  三角形三条中线交于一

3、点(重心):如图5D,E分别为BC,AC中点所以BD=DCAE=EC所以BD/DC=1CE/EA=1  且因为AF=BF所以AF/FB必等于1所以AF=FB所以三角形三条中线交于一点  此外,可用定比分点来定义塞瓦定理:  在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。于是AL、BM、CN三线交于一点的充要条件是λμν=1。(注意与梅涅劳斯定理相区分,那里是λμν=-1)  塞瓦定理推论:  设E是△ABD内任意一点,  AE、BE、DE分别交对边于C、G、F,则(BC/CD)*(DG/GA)*(A

4、F/FB)=1,(塞瓦定理)  则(BD/CD)*(CE/AE)*(AF/FB)=K(K为未知参数)且(BD/BC)*(CE/AE)*(GA/DG)=K(K为未知参数)  由梅涅劳斯定理得:(BD/CD)*(CE/AE)*(AF/FB)=1  所以(BD/BC)*(CE/AE)*(GA/DG)=1(塞瓦定理推论)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。