cam11-21Proximity Algorithms for Image Models II L1 TV Denoising

cam11-21Proximity Algorithms for Image Models II L1 TV Denoising

ID:40375519

大小:2.01 MB

页数:25页

时间:2019-08-01

cam11-21Proximity Algorithms for Image Models II L1 TV Denoising_第1页
cam11-21Proximity Algorithms for Image Models II L1 TV Denoising_第2页
cam11-21Proximity Algorithms for Image Models II L1 TV Denoising_第3页
cam11-21Proximity Algorithms for Image Models II L1 TV Denoising_第4页
cam11-21Proximity Algorithms for Image Models II L1 TV Denoising_第5页
资源描述:

《cam11-21Proximity Algorithms for Image Models II L1 TV Denoising》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ProximityAlgorithmsforImageModelsII:L1/TVDenoisingCharlesA.Micchelli∗LixinShen†YueshengXu†§‡XueyingZeng§AbstractThispaperintroducesaproximityoperatorframeworkforstudyingtheL1/TVimagede-noisingmodelwhichminimizesthesumofadatafidelitytermmeasuredinthe`1-no

2、rmandthetotal-variationregularizationterm.Bothtermsinthemodelarenon-differentiable.Thiscausesalgorithmicdifficultiesforitsnumericaltreatment.Toovercomethedifficulties,weformulatethetotal-variationasacompositionoftheconvexfunctionwiththe`1-normorthe`2-normand

3、thefirstorderdifferenceoperator,andthenexpressthesolutionofthemodelintermsoftheproximityoperatorofthecomposition.Bydevelopinga“chainrule”fortheproximityoperatorofthecomposition,weidentifythesolutionasafixedpointofamappingexpressedintermsoftheproximityopera

4、torofthe`1-normorthe`2-norm,eachofwhichisexplicitlygiven.Thisformulationnaturallyleadstofixed-pointalgorithmsforthenumericaltreatmentofthemodel.Weproposeanalternativemodelbyreplacingthenon-differentiableconvexfunctionintheformulationofthetotalvariationwit

5、hitsdifferentiableMoreauenvelopeanddevelopcorrespondingfixed-pointalgorithmsforsolvingthenewmodel.Whenpartialinformationoftheunderlyingimageisavailable,wemodifythemodelbyaddinganindicatorfunctiontotheminimizationfunctionalandderiveitscorrespondingfixed-poi

6、ntalgorithms.Weestablishcon-vergenceresultsoftheproposedfixed-pointalgorithmsbyshowingthatthemappingswhichdefinethefixed-pointiterationsarenonexpansive.Numericalexperimentsareconductedtotesttheapproximationaccuracyandcomputationalefficiencyoftheproposedalgor

7、ithms.Also,weprovideacomparisonofourapproachtotwostate-of-the-artalgorithmsavailableinthelitera-ture.Numericalresultsconfirmthatouralgorithmsperformfavorably,intermsofPSNR-valuesandCPU-time,incomparisontothetwoalgorithms.1IntroductionTotal-variationbased

8、variationalmodelsarewidelyusedinimagedenoising.Thewell-knownRudin-Osher-Fatemi(ROF)imagedenoisingmodel[38]seeksaminimizerofthesumofadatafidelitytermmeasuredinthesquareof`2-normandthetotal-variationregularizationterm.Thisminimizati

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。