Basics of image classification with Keras – Towards Data Science

Basics of image classification with Keras – Towards Data Science

ID:40361806

大小:3.82 MB

页数:10页

时间:2019-08-01

Basics of image classification with Keras – Towards Data Science_第1页
Basics of image classification with Keras – Towards Data Science_第2页
Basics of image classification with Keras – Towards Data Science_第3页
Basics of image classification with Keras – Towards Data Science_第4页
Basics of image classification with Keras – Towards Data Science_第5页
资源描述:

《Basics of image classification with Keras – Towards Data Science》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、JohnOlafenwaFollowA22yearsold,selfTaught ComputerProgrammerandDeepNeuralNetworkPractitionerwithfocusonComputerVision.LivesInNigeria.Jan19·5minreadBasicsofimageclassicationwithKerasInmypreviouspost,Idelvedintosomeofthetheoreticalconceptsunderlyingarticialneuralnetworks

2、.Inthispost,Iwouldbeexplainingsomecommonoperationsthatyouwouldfrequentlyneedinkeras.First,howtosavemodelsandusethemforpredictionlater,displayingimagesfromthedatasetandloadingimagesfromoursystemandpredictingtheirclass.FireupyourIDEifyouhaven’tdonesoandreadon.SAVINGMODELS

3、Trainingmodelsisaveryslowprocess,nobodywant’stodothateverytime,fortunately,weonlyneedtotrainourmodelonce,saveitandthenwecanloaditanytimeanduseittopredictnewimages.Kerassavesmodelsinthe.h5format,soincaseyouskippedinstallingh5pyinthersttutorialIposted,pleasrunpip3install

4、h5pyWewouldalsoneedmatplotlibtovisualizeourimage,hence,runpip3installmatplotlibHereisthecodeforthersttutorialimportkerasfromkeras.datasetsimportmnistfromkeras.layersimportDensefromkeras.modelsimportSequentialfromkeras.optimizersimportSGD(train_x,train_y),(test_x,test_y

5、)=mnist.load_data()#train_x=train_x.astype('float32')/255#test_x=test_x.astype('float32')/255print(train_x.shape)print(train_y.shape)print(test_x.shape)print(test_y.shape)train_x=train_x.reshape(60000,784)test_x=test_x.reshape(10000,784)train_y=keras.utils.to_categorica

6、l(train_y,10)test_y=keras.utils.to_categorical(test_y,10)model=Sequential()model.add(Dense(units=128,activation="relu",input_shape=(784,)))model.add(Dense(units=128,activation="relu"))model.add(Dense(units=128,activation="relu"))model.add(Dense(units=10,activation="soft

7、max"))model.compile(optimizer=SGD(0.001),loss="categorical_crossentropy",metrics=["accuracy"])model.fit(train_x,train_y,batch_size=32,epochs=10,verbose=1)accuracy=model.evaluate(x=test_x,y=test_y,batch_size=32)print("Accuracy:",accuracy[1])Tosavethemodel,simplyaddbelowa

8、ftermodel.t()model.save("mnist-model.h5")INFERENCEInferencereferstotheprocessofpredictingnewimagesusingourmod

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。