欢迎来到天天文库
浏览记录
ID:40353073
大小:158.03 KB
页数:8页
时间:2019-07-31
《Hyperparameter and Kernel Learning for Graph Based Semi-Supervised Classification》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、HyperparameterandKernelLearningforGraphBasedSemi-SupervisedClassificationAshishKapoory,Yuan(Alan)Qiz,HyungilAhnyandRosalindW.PicardyyMITMediaLaboratory,Cambridge,MA02139fkapoor,hiahn,picardg@media.mit.eduzMITCSAIL,Cambridge,MA02139alanqi@csail.mit.eduAbstractTherehavebeenmanygraph-basedapproa
2、chesforsemi-supervisedclas-sification.Oneproblemisthatofhyperparameterlearning:performancedependsgreatlyonthehyperparametersofthesimilaritygraph,trans-formationofthegraphLaplacianandthenoisemodel.WepresentaBayesianframeworkforlearninghyperparametersforgraph-basedsemi-supervisedclassification.G
3、ivensomelabeleddata,whichcancontaininaccuratelabels,weposethesemi-supervisedclassificationasanin-ferenceproblemovertheunknownlabels.ExpectationPropagationisusedforapproximateinferenceandthemeanoftheposteriorisusedforclassification.ThehyperparametersarelearnedusingEMforevidencemaximization.Weal
4、soshowthattheposteriormeancanbewrittenintermsofthekernelmatrix,providingaBayesianclassifiertoclassifynewpoints.Testsonsyntheticandrealdatasetsshowcaseswheretherearesignificantimprovementsinperformanceovertheexistingapproaches.1IntroductionAlotofrecentworkonsemi-supervisedlearningisbasedonregul
5、arizationongraphs[5].Thebasicideaistofirstcreateagraphwiththelabeledandunlabeleddatapointsastheverticesandwiththeedgeweightsencodingthesimilaritybetweenthedatapoints.Theaimisthentoobtainalabelingoftheverticesthatisbothsmoothoverthegraphandcompatiblewiththelabeleddata.Theperformanceofmostofthe
6、sealgorithmsdependsupontheedgeweightsofthegraph.OftenthesmoothnessconstraintsonthelabelsareimposedusingatransformationofthegraphLaplacianandtheparametersofthetransformationaffecttheperformance.Further,theremightbeotherparametersinthemodel,suchasparameterstoaddresslabelnoiseinthedata.Findinga
7、rightsetofparametersisachallenge,andusuallythemethodofchoiceiscross-validation,whichcanbeprohibitivelyexpensiveforreal-worldproblemsandproblematicwhenwehavefewlabeleddatapoints.Mostofthemethodsignoretheproblemoflearninghyperparametersthatdeterminet
此文档下载收益归作者所有