Hyperparameter and Kernel Learning for Graph Based Semi-Supervised Classification

Hyperparameter and Kernel Learning for Graph Based Semi-Supervised Classification

ID:40353073

大小:158.03 KB

页数:8页

时间:2019-07-31

Hyperparameter and Kernel Learning for Graph Based Semi-Supervised Classification_第1页
Hyperparameter and Kernel Learning for Graph Based Semi-Supervised Classification_第2页
Hyperparameter and Kernel Learning for Graph Based Semi-Supervised Classification_第3页
Hyperparameter and Kernel Learning for Graph Based Semi-Supervised Classification_第4页
Hyperparameter and Kernel Learning for Graph Based Semi-Supervised Classification_第5页
资源描述:

《Hyperparameter and Kernel Learning for Graph Based Semi-Supervised Classification》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、HyperparameterandKernelLearningforGraphBasedSemi-SupervisedClassificationAshishKapoory,Yuan(Alan)Qiz,HyungilAhnyandRosalindW.PicardyyMITMediaLaboratory,Cambridge,MA02139fkapoor,hiahn,picardg@media.mit.eduzMITCSAIL,Cambridge,MA02139alanqi@csail.mit.eduAbstractTherehavebeenmanygraph-basedapproa

2、chesforsemi-supervisedclas-sification.Oneproblemisthatofhyperparameterlearning:performancedependsgreatlyonthehyperparametersofthesimilaritygraph,trans-formationofthegraphLaplacianandthenoisemodel.WepresentaBayesianframeworkforlearninghyperparametersforgraph-basedsemi-supervisedclassification.G

3、ivensomelabeleddata,whichcancontaininaccuratelabels,weposethesemi-supervisedclassificationasanin-ferenceproblemovertheunknownlabels.ExpectationPropagationisusedforapproximateinferenceandthemeanoftheposteriorisusedforclassification.ThehyperparametersarelearnedusingEMforevidencemaximization.Weal

4、soshowthattheposteriormeancanbewrittenintermsofthekernelmatrix,providingaBayesianclassifiertoclassifynewpoints.Testsonsyntheticandrealdatasetsshowcaseswheretherearesignificantimprovementsinperformanceovertheexistingapproaches.1IntroductionAlotofrecentworkonsemi-supervisedlearningisbasedonregul

5、arizationongraphs[5].Thebasicideaistofirstcreateagraphwiththelabeledandunlabeleddatapointsastheverticesandwiththeedgeweightsencodingthesimilaritybetweenthedatapoints.Theaimisthentoobtainalabelingoftheverticesthatisbothsmoothoverthegraphandcompatiblewiththelabeleddata.Theperformanceofmostofthe

6、sealgorithmsdependsupontheedgeweightsofthegraph.OftenthesmoothnessconstraintsonthelabelsareimposedusingatransformationofthegraphLaplacianandtheparametersofthetransformationaffecttheperformance.Further,theremightbeotherparametersinthemodel,suchasparameterstoaddresslabelnoiseinthedata.Findinga

7、rightsetofparametersisachallenge,andusuallythemethodofchoiceiscross-validation,whichcanbeprohibitivelyexpensiveforreal-worldproblemsandproblematicwhenwehavefewlabeleddatapoints.Mostofthemethodsignoretheproblemoflearninghyperparametersthatdeterminet

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。