Graph Classification Using Evolutionary Computation]

Graph Classification Using Evolutionary Computation]

ID:40383816

大小:914.24 KB

页数:12页

时间:2019-08-01

Graph Classification Using Evolutionary Computation]_第1页
Graph Classification Using Evolutionary Computation]_第2页
Graph Classification Using Evolutionary Computation]_第3页
Graph Classification Using Evolutionary Computation]_第4页
Graph Classification Using Evolutionary Computation]_第5页
资源描述:

《Graph Classification Using Evolutionary Computation]》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、GAIA:GraphClassificationUsingEvolutionaryComputationNingJinCalvinYoungWeiWangUniversityofNorthCarolinaUniversityofNorthCarolinaUniversityofNorthCarolinaatChapelHillatChapelHillatChapelHillChapelHill,NC,USAChapelHill,NC,USAChapelHill,NC,USAnjin@cs.unc.eduyoungc@c

2、s.unc.eduweiwang@cs.unc.eduABSTRACTtobeabletopredictwhichchemicalcompoundsaretoxicandwhichcomponentsarecharacteristicsofchemicaltoxicityDiscriminativesubgraphsarewidelyusedtodefinethefeature[Helma,2004];biologistsareinterestedinstudyingwhichspaceforgraphclassifi

3、cationinlargegraphdatabases.Severalproteinsareabletobindcertainligandsandwhichcanbeusedtoscalableapproacheshavebeenproposedtominediscriminativetreatdiseases[Bandyopadhyay,2006];computerscientistsseektosubgraphs.However,theirintensivecomputationneedspreventfindou

4、thowtolocatebugsinprogramsbyidentifyingthemfrommininglargedatabases.Weproposeanefficientdiscriminativesubgraphsinprogramflowgraphs[Cheng,2009].methodGAIAforminingdiscriminativesubgraphsforgraphPerformingtheseclassificationtasksbyhandisintractableclassificationin

5、largedatabases.Ourmethodemploysanovelcomputationally,thusincreasingattentionhasbeendevotedinsubgraphencodingapproachtosupportanarbitrarysubgraphdevelopinggraphclassificationmethodsinrecentyears.patternexplorationorderandexploresthesubgraphpatternspaceinaprocessr

6、esemblingbiologicalevolution.Inthismanner,1.1RelatedWorkGAIAisabletofinddiscriminativesubgraphpatternsmuchfasterExistingresearchoftenassumesabinarygraphclassificationtaskthanotheralgorithms.Additionally,wetakeadvantageofparallelwhereatargetgraphsetandabackground

7、graphsetaregivenandcomputingtofurtherimprovethequalityofresultingpatterns.Intheobjectiveistoconstructaclassificationmodelfortheend,weemploysequentialcoveragetogenerateassociationdistinguishingthem.Onestraightforwardsolution[Deshpande,rulesasgraphclassifiersusing

8、patternsminedbyGAIA.2005;Bandyopadhyay,2006]tographclassificationisfirstExtensiveexperimentshavebeenperformedtoanalyzethefindingfrequentsubgraphpatterns[Inokuchi,2000

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。