Maximum Likelihood Estimation (MLE)

ID:40084765

大小:206.78 KB

页数:22页

时间:2019-07-20

Maximum Likelihood Estimation (MLE)_第1页
Maximum Likelihood Estimation (MLE)_第2页
Maximum Likelihood Estimation (MLE)_第3页
Maximum Likelihood Estimation (MLE)_第4页
Maximum Likelihood Estimation (MLE)_第5页
资源描述:

《Maximum Likelihood Estimation (MLE)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MaximumLikelihoodEstimation(MLE)1SpecifyingaModelTypically,weareinterestedinestimatingparametricmodelsoftheformyi»f(µ;yi)(1)whereµisavectorofparametersandfissomespeci¯cfunctionalform(probabilitydensityormassfunction).1Notethatthissetupisquitegeneralsincethespeci¯cfunctionalfor

2、m,f,providesanalmostunlimitedchoiceofspeci¯cmodels.Forexample,wemightuseoneofthefollowingdistributions:²PoissonDistributione¡¸¸yiyi»f(¸;yi)=(2)yi!Asyoucansee,wehaveonlyoneparametertoestimate:¸.IntermsofEq.1,µ=¸.²BinomialDistributiony»f(¼;y)=N!¼yi(1¡¼)N¡yi(3)iiyi!(N¡yi)!orµ¶y»f

3、(¼;y)=N¼yi(1¡¼)N¡yi(4)iiyiAgain,wehaveonlyoneparametertoestimate:¼.IntermsofEq.1,µ=¼.²NormalDistribution21¡(yi¡¹i)yi»fN(µ;yi)=pe2¾2(5)2¼¾2whereµ=¹;¾2and¹=g((¯;xi).Asyoucansee,wehavetwoparameterstoestimate:¯and¾2.IntermsofEq.1,µ=¯;¾2.Obviouslythechoiceofdistributionwilldependon

4、yourtheory.1Probabilitymassfunctionsapplytodiscreterandomvariables,whereasprobabilitydensityfunctionsapplytocontinuousrandomvariables.12IntuitionThefollowingexampleprovidessomeintuitionaboutmaximumlikelihoodestimation.Supposeourdependentvariablefollowsanormaldistribution:y»N(¹

5、;¾2)(6)iThus,wehave:E[y]=¹(7)var(y)=¾2(8)Ingeneral,wewillhavesomeobservationsonYandwewanttoestimate¹and¾2fromthosedata.Theidea,aswewillsee,ofmaximumlikelihoodisto¯ndtheestimateoftheparameter(s)thatmaximizestheprobabilityofobservingthedatathatwehave.Supposethatwehavethefollowin

6、g¯veobservationsonY:Y=f54;53;49;61;58g(9)Intuitively,wemightwonderabouttheoddsofgettingthese¯vedatapointsiftheywerefromanormaldistributionwith¹=100.Theanswerhereisthatitisnotverylikely{allofthedatapointsarealongwayfrom100.Butwhataretheoddsofgettingthe¯vedatapointsfromanormaldi

7、stributionwith¹=55.Nowthisseemsmuchmorereasonable.Maximumlikelihoodestimationisjustasystematicwayofsearchingfortheparametervaluesofourchosendistributionthatmaximizetheprobabilityofobservingthedatathatweobserve.Before,welookattheprocessofmaximumlikelihoodestimationindetail,wene

8、edtogooversomepreliminaries¯rst.3Preliminaries3.1FundamentalP

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《Maximum Likelihood Estimation (MLE)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MaximumLikelihoodEstimation(MLE)1SpecifyingaModelTypically,weareinterestedinestimatingparametricmodelsoftheformyi»f(µ;yi)(1)whereµisavectorofparametersandfissomespeci¯cfunctionalform(probabilitydensityormassfunction).1Notethatthissetupisquitegeneralsincethespeci¯cfunctionalfor

2、m,f,providesanalmostunlimitedchoiceofspeci¯cmodels.Forexample,wemightuseoneofthefollowingdistributions:²PoissonDistributione¡¸¸yiyi»f(¸;yi)=(2)yi!Asyoucansee,wehaveonlyoneparametertoestimate:¸.IntermsofEq.1,µ=¸.²BinomialDistributiony»f(¼;y)=N!¼yi(1¡¼)N¡yi(3)iiyi!(N¡yi)!orµ¶y»f

3、(¼;y)=N¼yi(1¡¼)N¡yi(4)iiyiAgain,wehaveonlyoneparametertoestimate:¼.IntermsofEq.1,µ=¼.²NormalDistribution21¡(yi¡¹i)yi»fN(µ;yi)=pe2¾2(5)2¼¾2whereµ=¹;¾2and¹=g((¯;xi).Asyoucansee,wehavetwoparameterstoestimate:¯and¾2.IntermsofEq.1,µ=¯;¾2.Obviouslythechoiceofdistributionwilldependon

4、yourtheory.1Probabilitymassfunctionsapplytodiscreterandomvariables,whereasprobabilitydensityfunctionsapplytocontinuousrandomvariables.12IntuitionThefollowingexampleprovidessomeintuitionaboutmaximumlikelihoodestimation.Supposeourdependentvariablefollowsanormaldistribution:y»N(¹

5、;¾2)(6)iThus,wehave:E[y]=¹(7)var(y)=¾2(8)Ingeneral,wewillhavesomeobservationsonYandwewanttoestimate¹and¾2fromthosedata.Theidea,aswewillsee,ofmaximumlikelihoodisto¯ndtheestimateoftheparameter(s)thatmaximizestheprobabilityofobservingthedatathatwehave.Supposethatwehavethefollowin

6、g¯veobservationsonY:Y=f54;53;49;61;58g(9)Intuitively,wemightwonderabouttheoddsofgettingthese¯vedatapointsiftheywerefromanormaldistributionwith¹=100.Theanswerhereisthatitisnotverylikely{allofthedatapointsarealongwayfrom100.Butwhataretheoddsofgettingthe¯vedatapointsfromanormaldi

7、stributionwith¹=55.Nowthisseemsmuchmorereasonable.Maximumlikelihoodestimationisjustasystematicwayofsearchingfortheparametervaluesofourchosendistributionthatmaximizetheprobabilityofobservingthedatathatweobserve.Before,welookattheprocessofmaximumlikelihoodestimationindetail,wene

8、edtogooversomepreliminaries¯rst.3Preliminaries3.1FundamentalP

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭