_Brouwer=theory_of_many_particle_systems

_Brouwer=theory_of_many_particle_systems

ID:39992554

大小:1.62 MB

页数:255页

时间:2019-07-16

_Brouwer=theory_of_many_particle_systems_第1页
_Brouwer=theory_of_many_particle_systems_第2页
_Brouwer=theory_of_many_particle_systems_第3页
_Brouwer=theory_of_many_particle_systems_第4页
_Brouwer=theory_of_many_particle_systems_第5页
资源描述:

《_Brouwer=theory_of_many_particle_systems》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TheoryofMany-ParticleSystemsLecturenotesforP654,CornellUniversity,spring2005.cPietBrouwer,2005.Permissionisgrantedtoprintandcopythesenotes,ifkepttogetherwiththetitlepageandthiscopyrightnotice.Chapter1Preliminaries1.1ThermalaverageIntheliterature,twotypesoftheoriesareconst

2、ructedtodescribeasystemofmanyparticles:Theoriesofthemany-particlegroundstate,andtheoriesthataddressathermalaverageattemperatureT.Inthiscourse,we'lllimitourselvesto nite-temperaturethermalequilibriaandtononequilibriumsituationsthatarisefroma nite-temperatureequilibriumbysw

3、itch-ingonatime-dependentperturbationintheHamiltonian.Inallcasesofinteresttous,resultsatzerotemperaturecanbeobtainedasthezerotemperaturelimitofthe nite-temperaturetheory.Below,webrie yrecallthebasicresultsofequilibriumstatisticalmechanics.ThethermalaverageofanobservableAi

4、sde nedashAi=trA^;^(1.1)where^isthedensitymatrixandA^istheoperatorcorrespondingtotheobservableA.Thedensitymatrix^describesthethermaldistributionoverthedi erenteigenstatesofthesystem.Thesymboltrdenotesthetrace"ofanoperator,thesummationovertheexpectationvaluesoftheopera

5、toroveranorthonormalbasisset,XtrA=hnjAjni:(1.2)nThebasissetfjnigcanbethecollectionofmany-particleeigenstatesoftheHamiltonianH^,oranyotherorthonormalbasisset.Inthecanonicalensembleofstatisticalmechanics,thetraceistakenoverallstateswithNparticlesandonehas1H^=TH^=T^=e;Z

6、=tre;(1.3)Z12CHAPTER1.PRELIMINARIESwhereH^istheHamiltonian.UsingthebasisofN-particleeigenstatesjnioftheHamiltonianH^,witheigenvaluesEn,thethermalaveragehAicanthenbewrittenasPeEn=ThnjA^jnihAi=nP:(1.4)eEn=TnInthegrand-canonicalensemble,thetraceistakenoverallstates,irrespe

7、ctiveofparticlenumber,andonehas1(H^N^)=T(H^N^)=T=e;Z=tre:(1.5)ZHereisthechemicalpotentialandNistheparticlenumberoperator.UsuallywewillincludethetermN^intothede nitionoftheHamiltonianH^,sothatexpressionsforthethermalaverageinthecanonicalandgrandcanonicalensembles

8、areformallyidentical.1.2Schr•odinger,Heisenberg,andinteractionpictureThereexistformallydi erentb

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。