2-Noise Dressing of Financial Correlation Matrices

2-Noise Dressing of Financial Correlation Matrices

ID:39908196

大小:61.98 KB

页数:4页

时间:2019-07-14

2-Noise Dressing of Financial Correlation Matrices_第1页
2-Noise Dressing of Financial Correlation Matrices_第2页
2-Noise Dressing of Financial Correlation Matrices_第3页
2-Noise Dressing of Financial Correlation Matrices_第4页
资源描述:

《2-Noise Dressing of Financial Correlation Matrices》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、VOLUME83,NUMBER7PHYSICALREVIEWLETTERS16AUGUST1999NoiseDressingofFinancialCorrelationMatricesLaurentLaloux,1,*PierreCizeau,1Jean-PhilippeBouchaud,1,2andMarcPotters11Science&Finance,109-111rueVictorHugo,92532LevalloisCedex,France2ServicedePhysiquedel’ÉtatCondensé,Centred’étudesdeSaclay,Or

2、medesMerisiers,91191Gif-sur-YvetteCedex,France(Received15December1998)Weshowthatresultsfromthetheoryofrandommatricesarepotentiallyofgreatinteresttounderstandthestatisticalstructureoftheempiricalcorrelationmatricesappearinginthestudyofmultivariatetimeseries.Thecentralresultofthepresentst

3、udy,whichfocusesonthecaseoffinancialpricefluctuations,istheremarkableagreementbetweenthetheoreticalprediction(basedontheassumptionthatthecorrelationmatrixisrandom)andempiricaldataconcerningthedensityofeigenvaluesassociatedtothetimeseriesofthedifferentstocksoftheS&P500(orothermajormarkets)

4、.Inparticular,thepresentstudyraisesseriousdoubtsontheblinduseofempiricalcorrelationmatricesforriskmanagement.PACSnumbers:05.45.Tp,02.10.Sp,05.40.Ca,87.23.GeP2NEmpiricalcorrelationmatricesareofgreatimportanceintotalvariancesPi,j1piCijpj,whereCistheco-dataanalysisinordertoextracttheunde

5、rlyinginformationvariancematrix.Theoptimalportfolio,whichminimizescontainedin“experimental”signalsandtimeseries(e.g.,theriskforagivenvalueofRP,caneasilybefoundexperimentaldatade-noising,patternrecognition,weatherintroducingaLagrangemultiplierandleadstoalinearforecast,econometricdata,mul

6、tivariateanalysis,etc.).InproblemwherethematrixChastobeinverted.Inpar-additiontothedirectmeasureofcorrelations,variousticular,thecompositionoftheleastriskyportfoliohasaclassesofstatisticaltools,suchasprincipalcomponentlargeweightontheeigenvectorsofCwiththesmallestanalysis,singularvalued

7、ecomposition,andfactoranalysis,eigenvalues[1,2].stronglyrelyonthevalidityofthecorrelationmatrixinHowever,areliableempiricaldeterminationofacorrela-ordertoobtainthemeaningfulpartofthesignal.Thus,ittionmatrixturnsouttobedifficult.ForasetofNdifferentisimportanttounderstandquantitat

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。