资源描述:
《LR-GAN Layered Recursive Generative Adversarial Networks for Image Generation 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、PublishedasaconferencepaperatICLR2017LR-GAN:LAYEREDRECURSIVEGENERATIVEAD-VERSARIALNETWORKSFORIMAGEGENERATIONJianweiYangAnithaKannanDhruvBatraandDeviParikhVirginiaTechFacebookAIResearchGeorgiaInstituteofTechnologyBlacksburg,VAMenloPark,CAAtlanta,GAjw2yang@vt.eduakannan@fb.comfdbatra,par
2、ikhg@gatech.eduABSTRACTWepresentLR-GAN:anadversarialimagegenerationmodelwhichtakesscenestructureandcontextintoaccount.Unlikepreviousgenerativeadversarialnet-works(GANs),theproposedGANlearnstogenerateimagebackgroundandfore-groundsseparatelyandrecursively,andstitchtheforegroundsonthebackgro
3、undinacontextuallyrelevantmannertoproduceacompletenaturalimage.Foreachforeground,themodellearnstogenerateitsappearance,shapeandpose.Thewholemodelisunsupervised,andistrainedinanend-to-endmannerwithgra-dientdescentmethods.TheexperimentsdemonstratethatLR-GANcangeneratemorenaturalimageswithob
4、jectsthataremorehumanrecognizablethanDCGAN.1INTRODUCTIONGenerativeadversarialnetworks(GANs)(Goodfellowetal.,2014)haveshownsignificantpromiseasgenerativemodelsfornaturalimages.AflurryofrecentworkhasproposedimprovementsovertheoriginalGANworkforimagegeneration(Radfordetal.,2015;Dentonetal.,201
5、5;Salimansetal.,2016;Chenetal.,2016;Zhuetal.,2016;Zhaoetal.,2016),multi-stageimagegenerationincludingpart-basedmodels(Imetal.,2016;Kwak&Zhang,2016),imagegenerationconditionedoninputtextorattributes(Mansimovetal.,2015;Reedetal.,2016b;a),imagegenerationbasedon3Dstructure(Wang&Gupta,2016),an
6、devenvideogeneration(Vondricketal.,2016).Whiletheholistic‘gist’ofimagesgeneratedbytheseapproachesisbeginningtolooknatural,thereisclearlyalongwaytogo.Forinstance,theforegroundobjectsintheseimagestendtobedeformed,blendedintothebackground,andnotlookrealisticorrecognizable.Onefundamentallimit
7、ationofthesemethodsisthattheyattempttogenerateimageswithouttakingintoaccountthatimagesare2Dprojectionsofa3Dvisualworld,whichhasalotofstructuresinit.Thismanifestsasstructureinthe2Dimagesthatcapturethisworld.OneexampleofthisstructurearXiv:1703.01560v1[cs.CV]5Mar2017is