LNM1314 chaptre 2 Kähler-Einstein metrics and extremal Kähler metrics

LNM1314 chaptre 2 Kähler-Einstein metrics and extremal Kähler metrics

ID:39715591

大小:467.14 KB

页数:15页

时间:2019-07-09

LNM1314 chaptre 2 Kähler-Einstein metrics and extremal Kähler metrics _第1页
LNM1314 chaptre 2 Kähler-Einstein metrics and extremal Kähler metrics _第2页
LNM1314 chaptre 2 Kähler-Einstein metrics and extremal Kähler metrics _第3页
LNM1314 chaptre 2 Kähler-Einstein metrics and extremal Kähler metrics _第4页
LNM1314 chaptre 2 Kähler-Einstein metrics and extremal Kähler metrics _第5页
资源描述:

《LNM1314 chaptre 2 Kähler-Einstein metrics and extremal Kähler metrics 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ChapterII.Kahler-EinsteinmetricsandextremalKahlermetrics§2.1Kahler-EinsteinmetricsLetMbeacompactcomplexmanifold.A(1,1)-form~onMissaidtobepositive(resp.negative)ifitislocallyexpressedby"--F=-~a.~dziAdzJ1Jwith(a.=)apositive(resp.negative)definiteHermit:tanmatrix;1jhenceaisnecessarilya

2、realform.AdeRhamclassoftype(1,1)issaidtobepositive(resp.negative)ifitisrepresentedbyapositive(resp.negative)form.Let(M,g)beacompac:Kablermanifold.Thenby(1.1.12)itsgahlerform~ispost:ireandthusitsKahlerclassQisalsopositive.Wesaythatgisagahler-Einsteinmetricif0=kmforsomerealnumberkwher

3、eOistheRicciformofg,see(t.1.19).IfMadmitsaKM~ler-EinsteinmetricthenCl(M)ispositive,zeroornegativeaccordingaskispositive,zeroornegative.Nowonecanasktheconverse:IfCl(M)ispositive,zeroornegativedoesMadmitaKahler-Einsteinmetric?Thisproblemcanbereducedtotheso-calledcomplexMonge-Ampereequ

4、ation(2.1.1)below.Toderivethisequation,noticethattheconditionp=koimpliesthat,whenk~O,~=~Cl(M)whereQistheKihlerclass.Whenk=0wefixanarbitraryKahlerclass~.NowstartwithaKahlermetricgwithitsKilerclassequaltoQ.WeseekaK/hler-Einsteinmetricoftheformg=(gi~÷Oil)whereisasmoothfunctionand~i]=a2

5、~r.SincebothOgandk~g8zIazjrepresentsCl(M),thereexistsasmoothfunctionFsuchthatpg-k~g=2~~FbyProposition11""26"Considerthefollowingequationwith~theunknown:(2.1.1)det(gi~+~i~)/det(gi~)=e-k~+F(gi]+~i~)>032Then(2.1.1)impliesthatP~-Pg=2~Pg/:'T=k~g--k-'~=k~pgsothatp~=k~.ThisimpliesthatgisaK

6、ahler-Einsteinmetric.Whenk~O,thisequationwasalreadysolvedbyAubin[AT2]andYau[YS1].OntheotherhanditisknownthatifCl(M)ispositiveMdoesnotnecessarilyadmitaKahler-Einsteinmetric.InfacttherearetwoknownnecessaryconditionsduetoMatsushima[MYt]andtotheauthor[FAll,bothofwhichweshallexplaininlat

7、ersections.ThesetwoobstructionsautomaticallyvanishifMadmitsnononzeroholomorphicvectorfield.CalabiconjecturesthatifCl(M)ispositiveandifthereisnonozeroholomorphicvectorfieldMwilladmitaKahler-Einsteinmetric(see[YS3]).WeremarkthatYau'ssolutioninthecasewhenk=0alsoprovestheCalabiconjectur

8、e(thisconjectureisd

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。