DRAW_ A Recurrent Neural Network For Image Generation

DRAW_ A Recurrent Neural Network For Image Generation

ID:39714787

大小:1.84 MB

页数:10页

时间:2019-07-09

DRAW_ A Recurrent Neural Network For Image Generation_第1页
DRAW_ A Recurrent Neural Network For Image Generation_第2页
DRAW_ A Recurrent Neural Network For Image Generation_第3页
DRAW_ A Recurrent Neural Network For Image Generation_第4页
DRAW_ A Recurrent Neural Network For Image Generation_第5页
资源描述:

《DRAW_ A Recurrent Neural Network For Image Generation》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、DRAW:ARecurrentNeuralNetworkForImageGenerationKarolGregorKAROLG@GOOGLE.COMIvoDanihelkaDANIHELKA@GOOGLE.COMAlexGravesGRAVESA@GOOGLE.COMDaniloJimenezRezendeDANILOR@GOOGLE.COMDaanWierstraWIERSTRA@GOOGLE.COMGoogleDeepMindAbstractThispaperintroducestheDeepRecur

2、rentAtten-tiveWriter(DRAW)neuralnetworkarchitectureforimagegeneration.DRAWnetworkscombineanovelspatialattentionmechanismthatmimicsthefoveationofthehumaneye,withasequentialvariationalauto-encodingframeworkthatallowsfortheiterativeconstructionofcompleximages

3、.ThesystemsubstantiallyimprovesonthestateoftheartforgenerativemodelsonMNIST,and,whentrainedontheStreetViewHouseNumbersdataset,itgeneratesimagesthatcannotbedistin-guishedfromrealdatawiththenakedeye.1.IntroductionTimeApersonaskedtodraw,paintorotherwiserecrea

4、teavisualscenewillnaturallydosoinasequential,iterativefashion,Figure1.AtrainedDRAWnetworkgeneratingMNISTdig-reassessingtheirhandiworkaftereachmodification.Roughits.Eachrowshowssuccessivestagesinthegenerationofasin-outlinesaregraduallyreplacedbypreciseforms,

5、linesaregledigit.Notehowthelinescomposingthedigitsappeartobe“drawn”bythenetwork.Theredrectangledelimitstheareaat-sharpened,darkenedorerased,shapesarealtered,andthetendedtobythenetworkateachtime-step,withthefocalpreci-finalpictureemerges.Mostapproachestoauto

6、maticim-sionindicatedbythewidthoftherectangleborder.agegeneration,however,aimtogenerateentirescenesatonce.Inthecontextofgenerativeneuralnetworks,thistyp-arXiv:1502.04623v2[cs.CV]20May2015icallymeansthatallthepixelsareconditionedonasinglelatentdistribution(

7、Dayanetal.,1995;Hinton&Salakhut-ThecoreoftheDRAWarchitectureisapairofrecurrentdinov,2006;Larochelle&Murray,2011).Aswellaspre-neuralnetworks:anencodernetworkthatcompressesthecludingthepossibilityofiterativeself-correction,the“onerealimagespresentedduringtra

8、ining,andadecoderthatshot”approachisfundamentallydifficulttoscaletolargereconstitutesimagesafterreceivingcodes.Thecombinedimages.TheDeepRecurrentAttentiveWriter(DRAW)ar-systemistrainedend-to-endwithstochasticg

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。