欢迎来到天天文库
浏览记录
ID:39659163
大小:114.64 KB
页数:5页
时间:2019-07-08
《数学人教版九年级上册《21.2.2 公式法》教学设计.2.2 公式法》教学设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、21.2.2公式法版本:人民教育出版社执教:甘肃省陇南市武都区两水中学唐小平教学目标知识与技能1.理解一元二次方程求根公式的推导过程.2.会利用求根公式解简单数字系数的一元二次方程.过程与方法1.经历探索求根公式的过程,激发学生的探究欲望和探究热情,培养学生的推理能力.2.培养学生的运算能力,并让学生养成良好的运算习惯.情感态度与价值观1.通过运用公式法解一元二次方程,提高学生的运算能力.2.培养学生积极探索、勇于创新的精神.3.让学生学会和他人合作,分享合作学习的乐趣、体会发现知识后的成就感,建立学
2、好数学的自信心.重点难点重点求根公式的推导和公式法的运用.难点一元二次方程求根公式的推导.教学方法启发式、探究式、讲练结合式.教具学具教具:彩笔、多媒体教学平台.学具:笔、学生学案.教材分析本节课选自2013年教育部审定通过的义务教育教科书《数学》人民教育出版社课程教材研究所编著的九年级上册“第二十一章一元二次中学数学课程教材研究开发中心方程”第二节“21.2解一元二次方程”第二课时“21.2.2公式法”的内容.一元二次方程的解法在初中数学教学中占有重要的位置,也是每年中考的热点考题之一,研究它很有现
3、实意义和探索价值,讨论它是增进学生对数学知识理解并应用的很好素材.学情分析本节课的内容继“21.2.1配方法”后,又在“21.2.3因式分解法”之前,根据维果斯基的“最近发展区理论”,学生已经掌握了用配方法解具体的数2字系数的一元二次方程,对于一般形式的一元二次方程axbxc0,学生可以根据用配方法解具体数字系数的一元二次方程的经验可能化成2b2b4ac(x)的形式(即学生可能的发展水平),至于要用到分类讨论的22a4a数学思想,这要通过教师引导、启发学生才能获得这方面的能力.所以本节课估
4、计学生在学习过程中感到困难之处是:讨论当2222b4ac0,b4ac0,b4ac0时,一元二次方程axbxc0的实数根的情况.教学环节一、创设情境导入新课21.用配方法解方程2x9x80.22.能否也可以用配方法解一般形式的一元二次方程axbxc0呢?(设计意图:通过复习引入,让学生先回忆配方法的解题思路,并通过练习题巩固所学知识,同时为本节课的学习做好铺垫.)二、探究新知进行新课根据用配方法解具体数字系数的一元二次方程的经验解一般形式的一元二2次方程axbxc0.
5、二次项系数化为1,得2bcxx0.aa移项,得2bcxx.aa配方,得2bb2cb2xx()(),a2aa2a即2b2b4ac(x).①22a4a22因为a0,所以4a0.式子b4ac的值有以下三种情况:22b4ac(1)当b4ac0时,0,由①得24a2bb4acx.2a2a方程有两个不相等的实数根22bb4acbb4acx,x.122a2a22b4ac(2)当b4ac0时,0,由①可知方程有两个相等的实数根24abxx
6、.122a22b4acb2(3)当b4ac0时,0,由①可知(x)0,而x取任何实数都不24a2ab2能使(x)0,因此方程无实数根.2a22一般地,对于一元二次方程axbxc0,当b4ac0时,它的实数根是2bb4acx2a2这个式子叫做一元二次方程axbxc0的求根公式.利用求根公式解一元二次方程的方法叫做公式法.用公式法解一元二次方程时需要注意两点:①必须是一般形式的一元二次方22程axbxc0;②b4ac0.(设计意图:让学生亲自动手实验,探究
7、结论,激发兴趣.培养学生爱动脑思考的好习惯.)三、运用新知巩固新课2例1用公式法解方程5x4x12.(2016·中考)2例2用公式法解方程4x4x1018x.2例3用公式法解方程x5x120.2(设计意图:加深对一元二次方程axbxc0求根公式的理解.)思考:以上三个例题中方程的根有什么规律?22一元二次方程axbxc0的根有三种情况:当b4ac0时,方程22axbxc0(a0)有两个不相等的实数根;当b4ac0时,方程22axbxc0(a0)有两
8、个相等的实数根;当b4ac0时,方程2axbxc0(a0)无实数根.22一般地,式子b4ac叫做一元二次方程axbxc0根的判别式,通2常用希腊字母“”表示它,即b4ac.四、回顾内容小结新课师:通过这节课的学习,同学们都有哪些收获?生1:……生2:………………………………………………………………………………………………………………师:……用公式法解一元二次方程的一般步骤:①把方程化成一般形式,并写出22a,b,c的值;②求出
此文档下载收益归作者所有