欢迎来到天天文库
浏览记录
ID:39538755
大小:682.00 KB
页数:15页
时间:2019-07-05
《对坐标曲线积分例题与习题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一、对坐标的曲线积分的概念与性质1.引例:变力沿曲线所作的功.设一质点受如下变力作用在xOy平面内从点A沿光滑曲线弧L移动到点B,求移“大化小”“常代变”“近似和”“取极限”变力沿直线所作的功解决办法:动过程中变力所作的功W.1)“大化小”.2)“常代变”把L分成n个小弧段,有向小弧段近似代替,则有所做的功为F沿则用有向线段上任取一点在3)“近似和”4)“取极限”(其中为n个小弧段的最大长度)2.定义.设L为xOy平面内从A到B的一条有向光滑弧,若对L的任意分割和在局部弧段上任意取点,都存在,在有向曲线弧L上对坐标的曲线积分,则称此极限为函数或第二类曲
2、线积分.其中,L称为积分弧段或积分曲线.称为被积函数,在L上定义了一个向量函数极限记作若为空间曲线弧,记称为对x的曲线积分;称为对y的曲线积分.若记,对坐标的曲线积分也可写作类似地,3.性质(1)若L可分成k条有向光滑曲线弧(2)用L-表示L的反向弧,则则定积分是第二类曲线积分的特例.说明:对坐标的曲线积分必须注意积分弧段的方向!二、对坐标的曲线积分的计算法定理:在有向光滑弧L上有定义且L的参数方程为则曲线积分连续,存在,且有例1.计算其中L为沿抛物线解法1取x为参数,则解法2取y为参数,则从点的一段.例2.计算其中L为(1)半径为a圆心在原点的上半圆
3、周,方向为逆时针方向;(2)从点A(a,0)沿x轴到点B(–a,0).解:(1)取L的参数方程为(2)取L的方程为则则例3.计算其中L为(1)抛物线(2)抛物线(3)有向折线解:(1)原式(2)原式(3)原式例4.设在力场作用下,质点由沿移动到解:(1)(2)的参数方程为试求力场对质点所作的功.其中为3.计算•对有向光滑弧•对有向光滑弧4.两类曲线积分的联系•对空间有向光滑弧:2.已知为折线ABCOA(如图),计算提示:作业P2003(2),(4),(6),(7);4;5;7;8第三节
此文档下载收益归作者所有